首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the following enzymes involved in the biosynthesis of porphyrins was determined in two strains of Trypanosoma cruzi (Y and CL) grown in two culture media (LIT and Warren): succinyl coenzyme A synthetase (Suc.CoA-S), 5-aminolevulinate synthetase (ALA-S), 4,5-dioxovaleric acid transaminase (DOVA-T), 5-aminolevulinate dehydratase (ALA-D), porphobilinogenase (PBGase), deaminase and heme synthetase (Heme-S). The amount of 5-aminolevulinic acid (ALA) and porphobilinogen, porphyrins and heme was also determined. ALA and PGB were detected in both strains of T. cruzi. However, ALA was not detected in epimastigotes of the Y strain grown in the LIT medium. The content of ALA and PBG varied according to the strain and the growth medium. No free porphyrins and heme were detected in both strains of T. cruzi. The activity of Suc.CoA-S and DOVA-T was markedly influenced by the strains of the parasite and the growth medium. No significant DOVA-T activity was detected in epimastigotes of the CL strain grown in the Warren's medium. No significant activity of ALA-D, PBGase and deaminase was detected in T. cruzi. Activity of Heme-S was detected in both strains of T. cruzi when mesoporphyrin, protoporphyrin or deuteroporphyrin was used as substrate. The enzyme activity was influenced by the strain of the parasite, the growth medium and the substrate used.  相似文献   

2.
BACKGROUND AND AIMS: Acute intermittent porphyria (AIP) is an inherited disease resulting from a reduced activity of the enzyme porphobilinogen deaminase (PBG-D). The kidney is an important target for numerous porphyrinogenic drugs and it may contribute to the clinical manifestations of porphyric attacks. An evaluation of kidney PBG-D role in the AIP pathophysiology requires detailed information on kidney PBG-D properties, under normal conditions. METHODS: Rat kidney PBG-D was purified to homogeneity and initial reaction velocities were calculated by measuring uroporphyrinogen I formation at pH 8.2 for different incubation times (0-20 min) and over a wide range of substrate concentrations (0.8-66 microM). RESULTS: Purified rat kidney PBG-D is a monomeric enzyme showing only a single protein band after SDS-PAGE, Western blot and isoelectric focusing (pI 4.9). Its molecular mass is 40 +/- 2.3 kDa, determined by SDS-PAGE and 39.8 +/- 2 kDa by gel filtration chromatography. Rat kidney PBG-D has an unusual kinetic behaviour, exhibiting a deviation from the Michaelis-Menten hyperbola. PBG-D kinetic data required a fitting to an equation of higher degree, leading to the following apparent kinetic constants: K(1) = 2.08 +/- 0.01 microM and K(2) = 0.102 +/- 0.003 microM. CONCLUSION: The values of these constants fulfil the restriction 4K(2) < or = K(1)(2), necessary for the occurrence of isoenzymes, interpreted in this work as enzyme-substrate intermediates. The initial reaction velocity expression here defined, correlates with an enzyme carrying only one active site but allowing, through conformational changes, the detection of at least two enzyme-substrate intermediates formed during PBG-D reaction.  相似文献   

3.
The activity of the following enzymes involved in the biosynthesis of porphyrins was determined in endosymbiote-free and endosymbiote-containing Crithidia deanei grown in a chemically defined medium: succinyl Coenzyme A synthetase (Suc.CoA-S), 5-aminolevulinate synthetase (ALA-S), 4,5-dioxovaleric acid transaminase (DOVA-T), 5-aminolevulinate dehydratase (ALA-D), porphobilinogenase (PBGase), deaminase and heme synthetase (Heme-S). The amount of 5-aminolevulinic acid (ALA) and porphobilinogen, porphyrins and heme was also determined. ALA and PBG were detected in C. deanei. The levels of free porphyrins was low. Heme concentration was nil. The activity of ALA-D, deaminase and PBGase was not detected in C. deanei. The activity of Suc.CoA-S and ALA-S were twice higher in symbiote-containing than in aposymbiotic C. deanei. Aposymbiotic cells had a higher activity of DOVA-T than symbiote-containing cells. The level of Heme-S, measured using protoporphyrin as substrate, was twice as high in symbiote-containing than in symbiote-free cells.  相似文献   

4.
Alpha-lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are powerful antioxidants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. The mechanism of anti-inflammatory activity of ALA and DHALA is not known. The present study describes the interaction of ALA and DHALA with pro-inflammatory secretory PLA(2) enzymes from inflammatory fluids and snake venoms. In vitro enzymatic inhibition of sPLA(2) from Vipera russellii, Naja naja and partially purified sPLA(2) enzymes from human ascitic fluid (HAF), human pleural fluid (HPF) and normal human serum (HS) by ALA and DHLA was studied using (14)C-oleate labeled Escherichia coli as the substrate. Biophysical interaction of ALA with sPLA(2) was studied by fluorescent spectral analysis and circular dichroism studies. In vivo anti-inflammatory activity was checked using sPLA(2) induced mouse paw edema model. ALA but not DHLA inhibited purified sPLA(2) enzymes from V. russellii, N. naja and partially purified HAF, HPF and HS in a dose dependent manner. This data indicated that ALA is critical for inhibition. IC(50) value calculated for these enzymes ranges from 0.75 to 3.0 microM. The inhibition is independent of calcium and substrate concentration. Inflammatory sPLA(2) enzymes are more sensitive to inhibition by ALA than snake venom sPLA(2) enzymes. ALA quenched the fluorescence intensity of sPLA(2) enzyme in a dose dependent manner. Apparent shift in the far UV-CD spectra of sPLA(2) with ALA indicated change in its alpha-helical confirmation and these results suggest its direct interaction with the enzyme. ALA inhibits the sPLA(2) induced mouse paw edema in a dose dependent manner and confirms the sPLA(2) inhibitory activity in vivo also. These data suggest that ALA may act as an endogenous regulator of sPLA(2) enzyme activity and suppress inflammatory reactions.  相似文献   

5.
The Bradyrhizobium japonicum hemA gene product delta-aminolevulinic acid (ALA) synthase is not required for symbiosis of that bacterium with soybean. Hence, the essentiality of the subsequent heme synthesis enzyme, ALA dehydratase, was examined. The B. japonicum ALA dehydratase gene, termed hemB, was isolated and identified on the basis of its ability to confer hemin prototrophy and enzyme activity on an Escherichia coli hemB mutant, and it encoded a protein that was highly homologous to ALA dehydratases from diverse organisms. A novel metal-binding domain in the B. japonicum ALA dehydratase was identified that is a structural composite of the Mg(2+)-binding domain found in plant ALA dehydratases and the Zn(2+)-binding region of nonplant ALA dehydratases. Enzyme activity in dialyzed extracts of cells that overexpressed the hemB gene was reconstituted by the addition of Mg2+ but not by addition of Zn2+, indicating that the B. japonicum ALA dehydratase is similar to the plant enzymes with respect to its metal requirement. Unlike the B. japonicum hemA mutant, the hemB mutant strain KP32 elicited undeveloped nodules on soybean, indicated by the lack of nitrogen fixation activity and plant hemoglobin. We conclude that the hemB gene is required for nodule development and propose that B. japonicum ALA dehydratase is the first essential bacterial enzyme for B. japonicum heme synthesis in soybean root nodules. In addition, we postulate that ALA is the only heme intermediate that can be translocated from the plant to the endosymbiont to support bacterial heme synthesis in nodules.  相似文献   

6.
Wolfgang Hachtel 《Planta》1981,151(4):299-303
Reciprocal differences in the rates of chlorophyll (Chl) formation during early stages of greening are observed in hybrid seedlings with identical genomes derived from reciprocal crosses between Oenothera berteriana (=villaricae) and Oe. odorata (=picensis), subgenus Munzia. In the presence of levulinic acid (LA), a competitive inhibitor of 5-aminolevulinic acid (ALA) dehydratase, ALA accumulated in the cotyledons and chlorophyll production was reduced in a stoichometric ratio. Accumulation of both Chl in untreated tissue and of ALA in seedlings incubated with LA is much more rapid in cotyledons with berteriana plastids than in those with odorata plastids. No difference was found between the inhibitor constants for LA of ALA dehydratase extracted from seedlings with either berteriana or odorata plastids. ALA formation is not limited by the availability of possible precursors. ALA dehydratase and the porphobilinogenase complex (PBGase) are present in abundance and in equal amounts in cotyledons with either berteriana or odorata plastids. It is concluded that the different capacities of the ALA synthesizing system fully account for the different rates of Chl formation in the seedlings with identical genomes and different plastid types.Abbreviations Chl chlorophyll - ALA 5-aminolevnlinic acid - ALAD 5-aminolevulinic acid dehydratase - LA levulinic acid - PBG porphobilinogen - PBGase porphobilinogenase - Oe Oenothera - bert berteriana - od odorata - Pl plastids  相似文献   

7.
In vivo as well as in vitro supply of sodium arsenate inhibited the 5-Amino levulinic acid dehydratase (5-aminolevulinate-hydrolyase EC 4.2.1.24, ALAD) activity in excised etiolated maize leaf segments during greening. The percent inhibition of enzyme activity by arsenate (As) was reduced by the supply of KNO3, but it was increased by the glutamine and GSH. Various inhibitors, such as, chloramphenicol, cycloheximide and LA, decreased the % inhibition of enzyme activity by As. The % inhibition of enzyme activity was also reduced by in vivo supply of DTNB. The enzyme activity was reduced substantially by in vitro inclusion of LA, both in the absence and presence of As. In vitro inclusion of DTNB and GSH inhibited the enzyme activity extracted from leaf segments treated without arsenate (-As enzyme) and caused respectively no effect and stimulatory effect on arsenate treated enzyme (+As enzyme). Increasing concentration of ALA during assay increased the activity of -As enzyme and +As enzyme to different extent, but double reciprocal plots for both the enzymes were biphasic and yielded distinct S0.5 values for the two enzymes (-As enzyme, 40 micromol/L and +As enzyme, 145 micromol/L) at lower concentration range of ALA only. It is suggested that As inhibits ALAD activity in greening maize leaf segments by affecting its thiol groups and/or binding of ALA to the enzyme.  相似文献   

8.
In plants, algae, and most bacteria, the heme and chlorophyll precursor 5-aminolevulinic acid (ALA) is formed from glutamate in a three-step process. First, glutamate is ligated to its cognate tRNA by glutamyl-tRNA synthetase. Activated glutamate is then converted to a glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR) in an NADPH-dependent reaction. Subsequently, GSA is rearranged to ALA by glutamate-1-semialdehyde aminotransferase (GSAT). The intermediate GSA is highly unstable under physiological conditions. We have used purified recombinant GTR and GSAT from the unicellular alga Chlamydomonas reinhardtii to show that GTR and GSAT form a physical and functional complex that allows channeling of GSA between the enzymes. Co-immunoprecipitation and sucrose gradient ultracentrifugation results indicate that recombinant GTR and GSAT enzymes specifically interact. In vivo cross-linking results support the in vitro results and demonstrate that GTR and GSAT are components of a high molecular mass complex in C. reinhardtii cells. In a coupled enzyme assay containing GTR and wild-type GSAT, addition of inactive mutant GSAT inhibited ALA formation from glutamyl-tRNA. Mutant GSAT did not inhibit ALA formation from GSA by wild-type GSAT. These results suggest that there is competition between wild-type and mutant GSAT for binding to GTR and channeling GSA from GTR to GSAT. Further evidence supporting kinetic interaction of GTR and GSAT is the observation that both wild-type and mutant GSAT stimulate glutamyl-tRNA-dependent NADPH oxidation by GTR.  相似文献   

9.
The porphobilinogen (PBG) synthase catalyzed reaction requires both Zn(II) and reducing equivalents for the production of PBG from two molecules of 5-aminolevulinic acid (ALA). An early step in the reaction is the production of a Schiff's base between PBG synthase and one ALA molecule. Because both substrate molecules are chemically identical, there had been no evidence of enzyme-catalyzed partial reactions of ALA under conditions where PBG is not formed. In this study, NaBH4 was used to trap the Schiff's base formed between substrate ALA and active holo-PBG synthase, inactive apo-PBG synthase, and inactive methylmethanethiosulfonate-modified apo-PBG synthase. ALA-dependent NaBH4 inactivation of these enzyme forms was quantified at 50-62, 94-97, and 93-96% inactivation, respectively. [4-14C]ALA was used to determine the stoichiometry of Schiff's base trapping which was 2.3, 3.5-4.0, and 3.4 per octamer for holoenzyme, apoenzyme, and methylmethanethiosulfonate-modified apoenzyme, respectively. These results are consistent with four active sites per octamer or half-of-the-sites reactivity. We conclude that the production of the Schiff's base formed between one ALA molecule and the enzyme requires neither Zn(II) nor reduced enzyme sulfhydryl groups. Furthermore, the possible number of kinetic schemes for formation of the quaternary complex of enzyme, Zn(II), and two ALA moieties, one as the Schiff's base, has been reduced from 12 to 3. This is the first demonstration of a partial reaction catalyzed by PBG synthase with the natural substrate ALA under conditions which do not support PBG formation. Thus, we have opened the way toward investigating the partial reactions which may precede Zn(II) participation in the PBG synthase reaction.  相似文献   

10.
  • 1.1. The effect of URO I on the activity of ALA-D, PBGase, deaminase and URO-D, both in aerobiosis and anaerobiosis, was studied.
  • 2.2. Photoinactivation of the enzymes was much lower in an anaerobic than in an aerobic atmosphere.
  • 3.3. Dark inactivation in the absence of oxygen was lower than its presence.
  • 4.4. Preincubation in the presence of ALA or PBG protected the enzymic activity of ALA-D, PBGase and deaminase against URO I-inactivation both under u.v. light and in the dark.
  • 5.5. Photoinactivating action of URO I would be mediated by reactive oxygen species generated by the excited porphyrin after its absorption of light. Dark inactivation, in aerobiosis, can also be partly mediated by amino acid oxidation, although to a lesser extent than that observed under u.v. light.
  相似文献   

11.
The kinetics of acetylcholinesterase alkylation with N,N-dimethyl-2-phenylaziridinium ion, the anionic-site-directed affinity label, has been investigated in the presence of alkylboronic acids, which are known as the esteratic-site-directed reversible inhibitors of the enzyme. The ternary complex of the enzyme, the aziridinium ion and alkylboronic acid, are formed in this reaction. In the case of propylboronic acid, for which the complete kinetic analysis of the acceleration effect has been carried out, the 85-fold increase in the rate of the enzyme alkylation reaction has been found. This acceleration effect was connected with the alkylation step, whereas the non-covalent binding of the aziridinium ion in the enzyme active centre was even hindered by the alkylboronic acid. The possible mechanism of this kinetic acceleration phenomenon is discussed with special reference to the kinetic data for the spontaneous solvolysis reaction of the aziridinium ion in water and organic solvents.  相似文献   

12.
Porphobilinogen synthase catalyzes the first committed step of the tetrapyrrole biosynthesis pathway. In an aldol-like condensation, two molecules of 5-aminolevulinic acid (ALA) form the first pyrrole, porphobilinogen. Newly synthesized analogues of a reaction intermediate of porphobilinogen synthase have been employed in studying the active site and the catalytic mechanism of this early enzyme of tetrapyrrole biosynthesis. This study combines structural and kinetic evaluation of the inhibition potency of these inhibitors. In addition, one of the determined protein structures provides for the first time structural evidence of a magnesium ion in the active site. From these results, we can corroborate an earlier postulated enzymatic mechanism that starts with formation of a C-C bond, linking C3 of the A-side ALA to C4 of the P-side ALA through an aldole addition. The obtained data are discussed with respect to the current literature.  相似文献   

13.
Effects of the prooxidant delta-aminolevulinic acid (ALA) and the antioxidant melatonin (MEL) were investigated in the male Syrian hamster Harderian gland (HG). Rodent Harderian glands are highly porphyrogenic organs, which may be used as model systems for studying damage by delta-aminolevulinic acid and its metabolites, as occurring in porphyrias. Chronic administration of delta-aminolevulinic acid (2 weeks) markedly decreased activities of the porphyrogenic enzymes delta-aminolevulinate synthase (ALA-S) and delta-aminolevulinate dehydratase (ALA-D) and of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and catalase (CAT), whereas porphobilinogen deaminase (PBG-D) remained unaffected. This treatment led to increased lipid peroxidation (LPO) and oxidatively modified protein (protein carbonyl) as well as to morphologically apparent tissue damage. Melatonin also caused decreases in delta-aminolevulinate synthase, delta-aminolevulinate dehydratase, superoxide dismutase, glutathione reductase and catalase. Despite lower activities of antioxidant enzymes, lipid peroxidation and protein carbonyl were markedly diminished. The combination of delta-aminolevulinic acid and melatonin led to approximately normal levels of delta-aminolevulinate dehydratase, glutathione reductase, catalase and protein carbonyl, and to rises in superoxide dismutase and porphobilinogen deaminase activities; lipid peroxidation remained even lower than in controls and the appearance of the tissue revealed a protective influence of melatonin. These results suggest that melatonin may have profound effects on the oxidant status of the Harderian gland.  相似文献   

14.
Membrane-bound nitrate reductase of Escherichia coli consists of three subunits designated as A, B, and C, with subunit C being the apoprotein of cytochrome b, A hemA mutant that cannot synthesize delta-aminolevulinic acid (ALA) produces a normal, stable, membrane-bound enzyme when grown with ALA. When grown without ALA, this mutant makes a reduced amount of membrane-bound enzyme that is unstable and contains no C subunit. Under the same growth conditions, this mutant accumulates a large amount of a soluble form of the enzyme in the cytoplasm. Accumulation of this cytoplasmic form begins immediately upon induction of the enzyme with nitrate. The cytoplasmic form is very similar to the soluble form of the enzyme obtained by alkaline heat extraction. It is a high-molecular-weight complex with a Strokes radius of 8.0 nm and consists of intact A and B subunits. When ALA is added to a culture growing without ALA, the cytoplasmic form of the enzyme is incorporated into the membrane in a stable form, coincident with the formation of functional cytochrome b. Reconstitution experiments indicate that subunit C is present in cultures grown without ALA but is reduced in amount or unstable. These results indicate that membrane-bound nitrate reductase is synthesized via a soluble precursor containing subunits A and B, which then binds to the membrane upon interaction with the third subunit, cytochrome b.  相似文献   

15.
Backgrounds and aims: skin lesions in cutaneous porphyrias appear to be determined by the structural properties of the porphyrins accumulated. To better understand the relationship between the structure and physicochemical properties of porphyrins and their specific effect on protein configuration, the action of a whole range of 8 to 2 carboxylic porphyrins has been studied. Materials and methods: δ-aminolevulinic acid dehydratase (ALA-D) and porphobilinogen deaminase (PBG-D) partially purified from bovine liver, were exposed to 10 μM uroporphyrin (Uro), phyriaporphyrin (Phyria), hexaporphyrin (Hexa), pentaporphyrin (Penta), coproporphyrin (Copro) or protoporphyrin (Proto), either in the dark or under UV light. All experiments were performed in the enzyme solutions after removing the porphyrins. Results: under both illuminating conditions, all porphyrins inactivated the enzymes (20–70% under control values), indicating photodynamic action mediated by oxidative reactions and conformational changes due to direct binding of porphyrins to the protein. Total thiol content in ALA-D was not significantly changed by most porphyrins under UV light, while all porphyrins increase total sulfhydryl groups in PBG-D (23–52% over the control values) indicating changes in the redox status of SH residues. Free amino groups were reduced by all porphyrins in ALA-D (23–56% under controls), instead they were enhanced in PBG-D (23–51% over controls), suggesting protein fragmentation. The formation of molecular aggregates would be the consequence of cross-links between oxidation products, while fragmentation can be attributed to either rupture of disulphur bridges and/or enhancement of free amino groups on the protein enzyme. Conclusions: the effect of the porphyrins on enzyme activity, total SH groups and free amino groups content, was different for ALA-D and PBG-D, even under the same illuminating conditions. On the basis of these results, no correlation between enzyme alterations and the physico-chemical properties of porphyrins could be established.  相似文献   

16.
The universal tetrapyrrole precursor δ-aminolevulinic acid (ALA) is formed from glutamate (Glu) in algae and higher plants. In the postulated reaction sequence, Glu-tRNA is produced by a Glu-tRNA synthetase, and the product serves as a substrate for a reduction step catalyzed by a pyridine nucleotide-requiring Glu-tRNA dehydrogenase. The reduced intermediate is then converted into ALA by a transaminase. An RNA and three enzyme fractions required for ALA formation from Glu have been isolated from soluble Chlorella extracts. The recombined fractions catalyzed ALA production from Glu or Glu-tRNA. The fraction containing the synthetase produced Glu-tRNA from Glu and tRNA in the presence of ATP and Mg2+. The isolated product of this reaction served as substrate for ALA production by the partially reconstituted enzyme system lacking the synthetase fraction and incapable of producing ALA from Glu. The production of ALA from Glu-tRNA by this partially reconstituted system did not require free Glu or ATP, and was not affected by added ATP. These results show that (a) free Glu-tRNA is an intermediate in the formation of ALA from Glu, (b) ATP is required only in the first step of the reaction sequence, and NADPH only in a later step, (c) Glu-tRNA production is the essential reaction catalyzed by one of the enzyme fractions, (d) this enzyme fraction is active in the absence of the other enzymes and is not required for activity of the others. The specific Glu-tRNA synthetase required for ALA formation has an approximate molecular weight of 73,000 ± 5,000 as determined by Sephadex G-100 gel filtration and native polyacrylamide gel electrophoresis. Other Glu-tRNA synthetases were present in the cell extracts but were ineffective in the the ALA-forming process.  相似文献   

17.
The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analogue of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form π-stacking interactions with the catalytic Tyr24 have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19-24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.  相似文献   

18.
5-Aminolevulinic acid (ALA), an important intermediate in tetrapyrrole biosynthesis in organisms, has been widely applied in many fields, such as medicine, agriculture, and the food industry, due to its biochemical characteristics. Research efforts supporting the microbial production of ALA have received increasing interest due to its dominant advantages over chemical synthesis, including higher yields, lesser pollutant emissions, and a lesser monetary cost. ALA synthesis using photosynthetic bacteria (PSB) is a promising approach in various microbial synthesis methods. In this review, recent advances on the microbial production of ALA with an emphasis on PSB are summarized, the key enzymes in the biosynthesis pathway (especially the relationship between key enzymes and key genes) are detailed, regulation strategies are described, and the significant influencing factors on the ALA biosynthesis and application of ALA are outlined. Furthermore, the eco-friendly perspective involving the combination of wastewater treatment and microbial production of ALA is conceived.  相似文献   

19.
The porphobilinogen deaminase (PBG-D) gene of Saccharomyces cerevisiae has been isolated by genetic complementation of a mutant GL7 (alpha hem 3) strain, previously shown to be defective in this haembiosynthetic enzyme [Gollub, Liu, Dayan, Adlersberg & Sprinson (1977) J. Biol. Chem. 252, 2846-2854]. The gene was selected from a yeast wild-type genomic DNA library ligated into the shuttle vector YEp13. The complementing gene restored growth of the hem 3 (PBG-D) mutant strain on media in the absence of exogeneous haem or fatty acid and sterol supplements. The recombinant plasmid was retained in the Hem+ transformant provided that selective pressure for plasmid-dependent growth was maintained. Transformation of the mutant strain (hem 3) restored the PBG-D activity to levels up to 10-fold those of the parental strain. The mutant strain GL7 does not show any measurable enzymic activity. Analysis of the plasmid designated YEpPBG-D (containing the PBG-D gene) by hybrid-selected translation revealed that it contained the coding information for a single protein of apparent Mr 43,000. The coding region was localized on an 1.5 kb endonuclease-EcoRI fragment (E4), within the 5.5 kb genomic insert in YEpPBG-D.  相似文献   

20.
D Grobelny  L Poncz  R E Galardy 《Biochemistry》1992,31(31):7152-7154
The hydroxamic acid HONHCOCH2CH(i-Bu)CO-L-Trp-NHMe, isomer 6A (GM 6001), inhibits human skin fibroblast collagenase with Ki of 0.4 nM using the synthetic thiol ester substrate Ac-Pro-Leu-Gly-SCH(i-Bu)CO-Leu-Gly-OEt at pH 6.5. The other isomer, 6B, which has the opposite configuration at the CH2CH(i-Bu)CO alpha-carbon atom, has a Ki of 200 nM for this enzyme. GM 6001 is one of the most potent inhibitors of human skin fibroblast collagenase yet reported. GM 6001 has a Ki of 20 nM against thermolysin and Pseudomonas aeruginosa elastase. Isomer 6B has a Ki of 7 nM against thermolysin and 2 nM against the elastase. 6A and 6B are the most potent hydroxamate inhibitors reported for these bacterial enzymes. The pattern of inhibition for all three enzymes suggests that isomer 6A is the (R,S) compound, stereochemically analogous to the L,L-dipeptide, and isomer 6B is the (S,S) compound, analogous to the DL-dipeptide. The tolerance of the D configuration by thermolysin and the elastase allows these inhibitors to discriminate between the human and bacterial enzymes simply by inversion of configuration at the CH2CH(i-Bu)CO alpha-carbon atom. Substitution of the potential metal liganding groups carboxylate and hydrazide for the hydroxamate group yields much weaker inhibitors for all three enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号