共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the reasons of rheumatoid arthritis (RA) development is widely recognized the relation of free radical reactions in tissue injuries. The aim of this study was to evaluate the location where in vivo free radical reactions was enhanced in adjuvant arthritis (AA) model rats using in vivo electron spin resonance (ESR)/nitroxyl spin probe technique. The signal decay after intravenous injection of spin probe was enhanced in AA than that in control and suppressed by the pre-treatment of dexamethasone (DXT). Interestingly, the decay in joint cavity occurred prior to paw swelling of AA and suppressed by a simultaneous injection of free radical scavengers, indicating that the enhancement of free radical reactions in joint cavity of AA rats. This technique would be useful tool to determine the location of the enhanced free radical reactions and evaluate the activity of antioxidant medicine with non-invasive real-time measurement. 相似文献
2.
One of the reasons of rheumatoid arthritis (RA) development is widely recognized the relation of free radical reactions in tissue injuries. The aim of this study was to evaluate the location where in vivo free radical reactions was enhanced in adjuvant arthritis (AA) model rats using in vivo electron spin resonance (ESR)/nitroxyl spin probe technique. The signal decay after intravenous injection of spin probe was enhanced in AA than that in control and suppressed by the pre-treatment of dexamethasone (DXT). Interestingly, the decay in joint cavity occurred prior to paw swelling of AA and suppressed by a simultaneous injection of free radical scavengers, indicating that the enhancement of free radical reactions in joint cavity of AA rats. This technique would be useful tool to determine the location of the enhanced free radical reactions and evaluate the activity of antioxidant medicine with non-invasive real-time measurement. 相似文献
3.
Nitric oxide synthase-cyclooxygenase interactions are involved in tumor cell angiogenesis and migration 总被引:2,自引:0,他引:2
Davel L D'Agostino A Español A Jasnis MA Lauría de Cidre L de Lustig ES Sales ME 《Journal of biological regulators and homeostatic agents》2002,16(3):181-189
Nitric oxide (NO), produced by distinct nitric oxide synthase (NOS) isoforms, and prostaglandins generated by expression of cyclooxygenases are important mediators in tumor progression. Previous studies have shown that NO can influence the formation of prostaglandin E2 (PGE2). We provide evidence that NO, derived from iNOS and eNOS activity in LMM3 murine mammary adenocarcinoma cell line, is involved in tumor angiogenesis and in tumor cell migration. LMM3 cells that also stimulate their neovascularization activity and migration liberate high basal amounts of PGE2. There is large amount of evidence that postulates positive regulatory interactions between NOS and cyclooxygenase (COX) isoforms. We here show that, in the LMM3 cell line, while PGE2 exerts a positive modulation on NOS activity, NO closes the loop with a negative feed back on COX activity. We also provide evidence of a positive regulatory effect of protein tyrosine kinases on NOS as well as on COX enzymatic functions affecting tumor induced angiogenesis and cell migration. 相似文献
4.
Wan X Hontelez J Lillo A Guarnerio C van de Peut D Fedorova E Bisseling T Franssen H 《Journal of experimental botany》2007,58(8):2033-2041
The establishment of a nitrogen-fixing root nodule on legumes requires the induction of mitotic activity of cortical cells leading to the formation of the nodule primordium and the infection process by which the bacteria enter this primordium. Several genes are up-regulated during these processes, among them ENOD40. Here it is shown, by using gene-specific knock-down of the two Medicago truncatula ENOD40 genes, that both genes are involved in nodule initiation. Further, during nodule development, both genes are essential for bacteroid development. 相似文献
5.
Michael J. Menconi Naoki Unno Marianne Smith Douglas E. Aguirre Mitchell P. Fink 《Biochimica et Biophysica Acta (BBA)/General Subjects》1998,1425(1):189-203
Many of the cytopathic effects of nitric oxide (NO·) are mediated by peroxynitrite (PN), a product of the reaction between NO· and superoxide radical (O·?2). In the present study, we investigated the role of PN, O·?2 and hydroxyl radical (OH·) as mediators of epithelial hyperpermeability induced by the NO· donor, S-nitroso-N-acetylpenicillamine (SNAP), and the PN generator, 3-morpholinosydnonimine (SIN-1). Caco-2BBe enterocytic monolayers were grown on permeable supports in bicameral chambers. Epithelial permeability, measured as the apical-to-basolateral flux of fluorescein disulfonic acid, increased after 24 h of incubation with 5.0 mM SNAP or SIN-1. Addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO· scavenger, or Tiron, an O·?2 scavenger, reduced the increase in permeability induced by both donor compounds. The SNAP-induced increase in permeability was prevented by allopurinol, an inhibitor of xanthine oxidase (a source of endogenous O·?2). Diethyldithiocarbamate, a superoxide dismutase inhibitor, and pyrogallol, an O·?2 generator, potentiated the increase in permeability induced by SNAP. Addition of the PN scavengers deferoxamine, urate, or glutathione, or the OH· scavenger mannitol, attenuated the increase in permeability induced by both SNAP and SIN-1. Both donor compounds decreased intracellular levels of glutathione and protein-bound sulfhydryl groups, suggesting the generation of a potent oxidant. These results support a role for PN, and possibly OH·, in the pathogenesis of NO· donor-induced intestinal epithelial hyperpermeability. 相似文献
6.
Nitric oxide and superoxide in inflammation and immune regulation. 总被引:32,自引:0,他引:32
7.
Huang CK Chang BS Wang KC Her SJ Chen TW Chen YA Cho CL Liao LJ Huang KL Chen WS Liu ZH 《Journal of plant physiology》2004,161(6):709-713
In the day-neutral plant Polianthes tuberosa (cv. Double) putrescine and spermine in corms at the early floral initiation stage decreased by 26 and 36%, respectively, compared with that in the vegetative stage. In contrast, a sharp increase in spermidine and cadaverine titers in corms was recorded at the early floral initiation stage. However, cadaverine in corms disappeared at the flower development stage. Polyamines in the roots were generally lower than those in the leaves and corms. In no case was the change in endogenous polyamine titers in the roots and leaves associated with floral initiation and flower development in P. tuberosa. Exogenous application of spermidine at 5, 25 or 150 microg per plant at the vegetative stage did not affect flower primordium counts. However, addition of a spermidine synthase inhibitor, cyclohexylamine, at 150 or 250 microg per plant (each dose was applied two times in total at an interval of 4 days) significantly reduced flower primordium counts, indicating that spermidine is involved in floral initiation and floral development in P. tuberosa. In P. tuberosa corms at the vegetative stage arginine decarboxylase activity rises and decreases at the early floral initiation stage. In contrast, ornithine decarboxylase activity reaches the highest level at the early floral initiation stage and declines significantly at the vegetative stage. Results indicate that an increase in spermidine and a transient increase in cadaverine titers in the corms seem characteristic of early floral initiation in P. tuberosa. It is also suggested that a significant reduction in putrescine and spermine in the corms is involved in the early floral initiation in P. tuberosa. 相似文献
8.
Nitric oxide and Drosophila development 总被引:7,自引:0,他引:7
Mechanisms controlling the transition of precursor cells from proliferation to differentiation during organism development determine the distinct anatomical features of tissues and organs. NO may mediate such a transition since it can suppress DNA synthesis and cell proliferation. Inhibition of NOS activity in the imaginal discs of Drosophila larvae results in hypertrophy of tissues and organs of the adult fly, whereas ectopic overexpression of NOS has the reciprocal, hypotrophic, effect. Furthermore, NO production is crucial for the establishment of ordered neuronal connections in the visual system of the fly, indicating that NO affects the acquisition of the differentiated phenotype by the neural tissue. Increasing evidence points to a broad role that NO may play in animal development by acting as an essential negative regulator of precursor cell proliferation during tissue and organ morphogenesis. 相似文献
9.
《Journal of Physiology》1997,91(3-5):113-122
Besides a superior protection of the pentadecapeptide BPC 157 (an essential fragment of an organoprotective gastric juice peptide BPC) against different gastrointestinal and liver lesions, an acute anti-inflammatory and analgetic activity was also noted. Consequently, its effect on chronic inflammation lesions, such as adjuvant arthritis, and non-steroidal anti-inflammatory agents (NSAIAs)-induced gastrointestinal lesions was simultaneously studied in rats. In gastrointestinal lesions (indomethacin (30 mg/kg sc), aspirin (400 mg/kg ig) and diclofenac (125 mg/kg ip) studies, BPC 157 (10 μg or 10 ng/kg ip) was regularly given simultaneously and/or 1 h prior to drug application (indomethacin). In the adjuvant arthritis (tail-application of 0.2 mL of Freund's adjuvant) studies (14 days, 30 days, 1 year) BPC 157 (10 μg or 10 ng/kg ip), it was given as a single application (at 1 h either before or following the application of Freund's adjuvant) or in a once daily regimen (0–14th day, 14–30th day, 14th day–1 year). Given with the investigated NSAIAs, BPC 157 consistently reduced the otherwise prominent lesions in the stomach of the control rats, as well as the lesions in the small intestine in the indomethacin groups. In the adjuvant arthritis studies, the lesion's development seems to be considerably reduced after single pentadecapeptide medication, and even more attenuated in rats daily treated with BPC 157. As a therapy of already established adjuvant arthritis, its salutary effect consistently appeared already after 2 weeks of medication and it could be clearly seen also after 1 year of application. Taking together all these results, the data likely point to a special anti-inflammatory and mucosal integrity protective effect. 相似文献
10.
11.
12.
Y Iigo T Takashi T Tamatani M Miyasaka T Higashida H Yagita K Okumura W Tsukada 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(12):4167-4171
Intercellular adhesion molecule 1 (ICAM-1) plays important roles in immune responses. In order to examine whether ICAM-1 is involved in pathogenesis of adjuvant arthritis (AA), we investigated the effect of anti-ICAM-1 mAb, 1A29, on AA in rats. In vivo administration of 1A29 exerted a very strong suppressive effect on the development of arthritis and induced a marked reduction of inflammatory parameters. 1A29 suppressed the Ag-specific proliferative response of lymph node cells from AA rats, suggesting that the mAb blocked the Ag recognition phase. The study using adoptive transfer of AA revealed that 1A29 completely inhibited production of arthritogenic lymphocytes in donors and partially suppressed progression of arthritis in recipients caused by these lymphocytes. These findings indicated that the inhibitory effect of 1A29 on development of arthritis was at least twofold, i.e., 1) interference with cell-cell interaction between APC and T cells, which resulted in abrogation of effector cell generation; and 2) blocking of effector cell migration to inflammatory lesions. These results indicated that ICAM-1-dependent pathway is critically involved in the pathogenesis of AA. The data support the concept that ICAM-1-dependent pathways are important in chronic inflammatory disease. 相似文献
13.
Initiation of leaves at the flanks of the shoot apical meristem occurs at sites of auxin accumulation and pronounced expression of auxin-inducible PIN-FORMED1 (PIN) genes, suggesting a feedback loop to progressively focus auxin in concrete spots. Because PIN expression is regulated by auxin response factor activity, including MONOPTEROS (MP), it appeared possible that MP affects leaf formation as a positive regulator of PIN genes and auxin transport. Here, we analyze a novel, completely leafless phenotype arising from simultaneous interference with both auxin signaling and auxin transport. We show that mp pin1 double mutants, as well as mp mutants treated with auxin-efflux inhibitors, display synergistic abnormalities not seen in wild type regardless of how strongly auxin transport was reduced. The synergism of abnormalities indicates that the role of MP in shoot meristem organization is not limited to auxin transport regulation. In the mp mutant background, auxin transport inhibition completely abolishes leaf formation. Instead of forming leaves, the abnormal shoot meristems dramatically increase in size, harboring correspondingly enlarged expression domains of CLAVATA3 and SHOOTMERISTEMLESS, molecular markers for the central stem cell zone and the complete meristem, respectively. The observed synergism under conditions of auxin efflux inhibition was further supported by an unrestricted PIN1 expression in mp meristems, as compared to a partial restriction in wild-type meristems. Auxin transport-inhibited mp meristems also lacked detectable auxin maxima. We conclude that MP promotes the focusing of auxin and leaf initiation in part through pathways not affected by auxin efflux inhibitors. 相似文献
14.
Narendhirakannan RT Subramanian S Kandaswamy M 《Molecular and cellular biochemistry》2005,276(1-2):71-80
The generation of free radicals has been implicated in the causation of several diseases of known and unknown etiologies such as, rheumatoid arthritis, diabetes, cancer, etc., and compounds that can scavenge free radicals have great potential in ameliorating these disease processes. The present study was aimed to investigate the possible anti-oxidant potential of Cleome gynandra leaf extract at a dose of 150 mg/kg body weight for 30 days on adjuvant induced arthritis in experimental rats. Oral administration of C. gynandra leaf extract significantly increased the levels of lipid peroxides and activities of catalase, glutathione peroxidase and decreased the levels of reduced glutathione and superoxide dismutase activity in arthritis induced rats. The free radical scavenging activity of the plant was further evidenced by histological observations made on the limb tissue. The presence of biologically active ingredients and vital trace elements in the leaves readily account for free radical scavenging property of C. gynandra. (Mol Cell Biochem 276: 71–80, 2005) 相似文献
15.
Takahashi H Nishina A Fukumoto RH Kimura H Koketsu M Ishihara H 《Life sciences》2005,76(19):2185-2192
Oxygen radicals, such as superoxide radicals, embellishing DNA, protein, lipids, etc., and carrying out the obstacle of the function of a cell is known. It depends for the oxidant level in the living body on the balance of a generation system and an elimination system of oxygen radicals, and research which controls an oxidant level in the living body is briskly done by taking in the substance which eliminates an oxygen radical. We investigated scavenging effects of superoxide radicals by selenoureas and thioureas using a highly sensitive and quantitative chemiluminescence method. At 330 nM, five selenoureas and five thioureas scavenged fractions of superoxide radicals (O2-) ranging from 8.4% to 87.6%. Among five N,N-unsubstituted selenoureas and N,N-unsubstituted thioureas 1-selenocarbamoylpiperidine and 1-thiocarbamoylpyrrolidine were the most effective scavengers. A possibility that selenoureas could use it as a new superoxide anion-scavenging substance from the result of this research became clear. 相似文献
16.
I. Yu. Malyshev E. B. Manukhina V. D. Mikoyan L. N. Kubrina A. F. Vanin 《FEBS letters》1995,370(3):159
Heat shock potentiated the nitric oxide production (EPR assay) in the liver, kidney, heart, spleen, intestine, and brain. The heat shock-induced sharp transient increase in the rate of nitric oxide production preceded the accumulation of heat shock proteins (HSP70) (Western blot analysis) as measured in the heart and liver. In all organs the nitric oxide formation was completely blocked by the NO-synthase inhibitor
(L-NNA). L-NNA also markedly attenuated the heat shock-induced accumulation of HSP70. The results suggests that nitric oxide is involved in the heat shock-induced activation of HSP70 synthesis. 相似文献
17.
K D Pletsity? E V Nikushkin M A Askerov L G Ponomarev 《Biulleten' eksperimental'no? biologii i meditsiny》1987,103(1):43-45
The experiments on rats have shown that preliminary oral administration of vitamin E significantly suppressed generalization, but not development of adjuvant-induced arthritis. Oral vitamin E administration beginning one day after the onset of arthritis inhibited the development and generalization of the disease. Vitamin E had no effect on serum lysosomal enzyme activity, but markedly depressed lipid peroxidation. 相似文献
18.
Dagmar Callsen Katrin B. Sandau Bernhard Brüne 《Free radical biology & medicine》1999,26(11-12):1544-1553
Platelet derived growth factor receptor (PDGFR) became tyrosine autophosphorylated in rat mesangial cells shortly after platelet derived growth factor (PDGF) ligation in a tyrosine kinase inhibitor (tyrphostin AG 1296) sensitive manner. Ligand-independent, massive tyrosine PDGFR phosphorylation was achieved by diverse NO releasing compounds. Phosphorylation was slow compared to PDGF, revealed a concentration- and time-dependency, and was not mimicked by lipophilic cyclic-GMP analogues. Interleukin-1 beta/cAMP activated mesangial cells released NO and in turn showed PDGFR phosphorylation. A NO-synthase involvement was assured by L-NG-nitroarginine methyl ester inhibition. PDGFR phosphorylation was also achieved by the redox cycler 2,3-dimethoxy-1,4-naphthoquinone. NO- and O2(.-)-evoked PGDFR phosphorylation was N-acetylcysteine reversible. Cell free dephosphorylation assays revealed PDGFR dephosphorylation by tyrosine phosphatases. Receptor dephosphorylation by cytosolic phosphatases was completed within 30 min and was sensitive to the readdition of NO donors or orthovanadate. In addition, phosphatase activity determined in a direct dephosphorylation assay using the substrate para-nitrophenyl phosphate was attenuated by NO or vanadate. We conclude that cytosolic protein tyrosine phosphatases are targeted by exogenously supplied or endogenously generated NO in mesangial cells. Radical (NO. or O2.-) formation shifts the phosphorylation--dephosphorylation equilibrium towards phosphorylation, thus integrating redox-mediated responses into established signal transducing pathways. 相似文献
19.
Engelmann M Wolf G Putzke J Bloom FE Raber J Landgraf R Spina MG Horn TF 《Amino acids》2004,26(1):37-43
Summary. Neurons of the hypothalamo-neurohypophyseal system (HNS) are known to contain high amounts of neuronal nitric oxide (NO) synthase (nNOS). NO produced by those neurons is commonly supposed to be involved as modulator in the release of the two nonapeptides vasopressin (AVP) and oxytocin into the blood stream. Previous studies showed that forced swimming fails to increase the release of AVP into the blood stream while its secretion into the hypothalamus is triggered. We investigated here whether hypothalamically acting NO contributes to the control of the AVP release into blood under forced swimming conditions. Intracerebral microdialysis and in situ hybridization were employed to analyze the activity of the nitrergic system within the supraoptic nucleus (SON), the hypothalamic origin of the HNS. A 10-min forced swimming session failed to significantly alter the local NO release as indicated both by nitrite and, the main by-product of NO synthesis, citrulline levels in microdialysis samples collected from the SON. Microdialysis administration of NO directly into the SON increased the concentration of AVP in plasma samples collected during simultaneous forced swimming. In an additional experiment the effect of the defined stressor exposure on the concentration of mRNA coding for nNOS within the SON was investigated by in situ hybridization. Forced swimming increased the expression of nNOS mRNA at two and four hours after onset of the stressor compared to untreated controls. Taken together, our results imply that NO within the SON does not contribute to the regulation of the secretory activity of HNS neurons during acute forced swimming. Increased nNOS mRNA in the SON after forced swimming and the increase in AVP release in the presence of exogenous NO under forced swimming points to a possible role of NO in the regulation of the HNS under repeated stressor exposure.Current address: Departments of Behavioral Neuroscience and Neurology, Oregon Health & Science University, Portland, OR 97239, U.S.A. 相似文献