首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
200 YEARS OF AMPHIBIAN WATER ECONOMY: FROM ROBERT TOWNSON TO THE PRESENT   总被引:3,自引:0,他引:3  
In the 1790s, Robert Townson established the main features of the water economy of terrestrial amphibians: rapid evaporative water loss in dry surroundings,‘drinking’ by absorption of water through the abdominal skin pressed against moist substrates, and use of the urinary bladder as a reservoir from which water is reabsorbed on land. This knowledge was of little interest to the establishment in the first half of the nineteenth century of experimental physiology as a basic medical discipline, when frogs became models in the elucidation of general physiological processes. Townson's pioneer contributions to amphibian physiology were forgotten for 200 years (Jørgensen 1994 b). Durig (1901) and particularly Overton (1904) restored knowledge about amphibian water economy to the level reached by Townson, but the papers had little impact on the young science of animal physiology because they primarily aimed at elucidating the transport of fluids across membranes. Frog skin remained a model preparation in such studies throughout the century. With the establishment of terrestrial ecology early in the century, the relations of animals, including amphibians, to water became a central theme. Concurrently with comparative studies of amphibian water economy in an ecological setting, the subject proceeded as an aspect of animal osmoregulation. Adolph (1920-1930) and Rey (1937 a) established the highly dynamic nature of water balance in amphibians in water and on land. Their observations indicated functional links between environment, skin and kidneys, the nature of which remained to be explored. Thorson & Svihla (1943) reopened the ecological approach in a comparative study of the relations between amphibian habitat and tolerance of dehydration. By mid-century, the central themes of amphibian adaptations to terrestrial modes of life were re-established, except for the function of the bladder as a water-depot. During the following decades, a rich literature appeared, particularly focusing on adaptations of amphibians to arid environments. Thus, in the 1970s, it was found that ‘waterproofing’ of the highly permeable skins by means of skin secretions had evolved independently in several families of tropical arboreal frogs, and that a number of amphibians that aestivate whilst burrowed in dry soil could reduce evaporation by forming cocoons from shed strata cornea. In 1950–1970 the role of bladder urine as a water depot in terrestrial amphibians was recognized: this did not change the established view of water balance in terrestrial amphibians as alternating between dehydration on land and rehydration in response to the deficit in body water. Amphibians may, however, maintain normal water balance whether the ambient medium is water or air by means of little understood integrated mechanisms in control of cutaneous drinking behaviour, water permeability of the skin and bladder wall, and urine production.  相似文献   

2.
Undisturbed toads, acclimated to a simulated terrestrial habitat with access to water, generally visited the water resource for cutaneous drinking before evaporative water losses had resulted in dehydration of the body, and often the bladder still contained ample amounts of urine. The toads did not urinate when they stayed out of water, but exposure to water in the terrestrially-acclimated state facilitated urination, even when the bladder contained only insignificant amounts of urine. Daily emptying of the bladder often resulted in substantial water deficits prior to drinking, but the severity and frequency of the deficits declined with time, concurrently with an increase in the frequency of cutaneous drinking. Volumes of urine stored in the bladder when the toads suspended cutaneous drinking varied from negligible to large, corresponding to up to 20% of the body mass. Daily emptying of the bladder tended to increase the volume of urine stored at the end of drinking episodes. It is concluded that toads and other terrestrial amphibians primarily maintain normal water balance by anticipatory cutaneous drinking; emergency drinking in response to dehydration plays a secondary role.  相似文献   

3.
Angiotensin II (Ang II) stimulates oral water intake by causing thirst in all terrestrial vertebrates except anurans. Anuran amphibians do not drink orally but absorb water osmotically through ventral skin. In this study, we examined the role of Ang II on the regulation of water-absorption behavior in the Japanese tree frog (Hyla japonica). In fully hydrated frogs, intracerebroventricular (ICV) and intralymphatic sac (ILS) injection of Ang II significantly extended the residence time of water in a dose-dependent manner. Ang II-dependent water uptake was inhibited by ICV pretreatment with an angiotensin II type-1 (AT1) receptor antagonist but not a type-2 (AT2) receptor antagonist. These results suggest that Ang II stimulates water-absorption behavior in the tree frog via an AT1-like but not AT2-like receptor. We then cloned and characterized cDNA of the tree frog AT1 receptor from the brain. The tree frog AT1 receptor cDNA encodes a 361 amino acid residue protein, which is 87% identical to the toad (Bufo marinus) AT1 receptor and exhibits the functional characteristics of an Ang II receptor. AT1 receptor mRNAs were found to be present in a number of tissues including brain (especially in the diencephalon), lung, large intestine, kidney and ventral pelvic skin. When tree frogs were exposed to dehydrating conditions, AT1 receptor mRNA significantly increased in the diencephalon and the rhombencephalon. These data suggest that central Ang II may control water intake behavior via an AT1 receptor on the diencephalon and rhombencephalon in anuran amphibians and may have implications for water consumption in vertebrates.  相似文献   

4.
As representatives of organisms with complex life histories, frogs provide an ideal system to study predator‐induced carryover effects: how the risk of predation in one life stage can impact predator–prey interactions in a later stage. Invertebrate predation on frogs has been widely reported, although studies of the behavioral mechanisms underlying their interactions in the terrestrial stage have been lacking. We made detailed observations of interactions between a wolf spider (Tigrosa helluo) and Blanchard's cricket frog (Acris blanchardi) to determine factors that predict capture success and to evaluate potential carryover effects from aquatic predation risk. Juvenile frogs, reared with or without dragonfly predator cues, were placed in an arena with or without spider cues and allowed to interact with a spider. Spiders captured frogs, and an interaction between frog size and activity predicted frog survival. We found no evidence that either aquatic or terrestrial cues altered frog behavior or survival. By preying upon a demographically important life stage, spiders may contribute to population dynamics in frogs.  相似文献   

5.
Symbiotic bacterial communities play a key role in protecting amphibians from infectious diseases including chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis. Events that lead to the disruption of the bacterial community may have implications for the susceptibility of amphibians to such diseases. Amphibians are often marked both in the wild and in captivity for a variety of reasons, and although existing literature indicates that marking techniques have few negative effects, the response of cutaneous microbial communities has not yet been investigated. Here we determine the effects of passive integrated transponder (PIT) tagging on culturable cutaneous microbial communities of captive Morelet''s tree frogs (Agalychnis moreletii) and assess the isolated bacterial strains for anti-B. dendrobatidis activity in vitro. We find that PIT tagging causes a major disruption to the bacterial community associated with the skin of frogs (∼12-fold increase in abundance), as well as a concurrent proliferation in resident fungi (up to ∼200-fold increase). Handling also caused a disruption the bacterial community, although to a lesser extent than PIT tagging. However, the effects of both tagging and handling were temporary, and after 2 weeks, the bacterial communities were similar to their original compositions. We also identify two bacterial strains that inhibit B. dendrobatidis, one of which increased in abundance on PIT-tagged frogs at 1 day postmarking, while the other was unaffected. These results show that PIT tagging has previously unobserved consequences for cutaneous microbial communities of frogs and may be particularly relevant for studies that intend to use PIT tagging to identify individuals involved in trials to develop probiotic treatments.  相似文献   

6.
The escape response of an organism is generally its last line of defense against a predator. Because the effectiveness of an escape varies with the approach behaviour of the predator, it should be advantageous for prey to alter their escape trajectories depending on the mode of predator attack. To test this hypothesis we examined the escape responses of a single prey species, the ground-dwelling túngara frog (Engystomops pustulosus), to disparate predators approaching from different spatial planes: a terrestrial predator (snake) and an aerial predator (bat). Túngara frogs showed consistently distinct escape responses when attacked by terrestrial versus aerial predators. The frogs fled away from the snake models (Median: 131°). In stark contrast, the frogs moved toward the bat models (Median: 27°); effectively undercutting the bat’s flight path. Our results reveal that prey escape trajectories reflect the specificity of their predators’ attacks. This study emphasizes the flexibility of strategies performed by prey to outcompete predators with diverse modes of attack.  相似文献   

7.
Abstract

Leiopelma hochstetteri, the most widespread of New Zealand's native frogs, is recognised as threatened, and is fully protected by legislation. As a first step to characterise the diet and trophic level of L. hochstetteri within streams in the Waitakere Ranges, Auckland, stable carbon and nitrogen isotope analyses were undertaken on a variety of sympatric terrestrial and aquatic plant and animal species, including adult frogs. These results show that: (1) aquatic and terrestrial food webs are linked by terrestrial inputs into the stream; (2) invertebrate and vertebrate predators separate well into distinct trophic groups, and (3) L. hochstetteri occupies an intermediate trophic position among predators, with a diet, at least as an adult, comprising terrestrial invertebrates. Shortfin eels and banded kokopu are identified as potential predators of L. hochstetteri, but data for rats are inconclusive. These results have important implications for the conservation of New Zealand native frog species and riparian stream habitat.  相似文献   

8.
We model Batrachochytrium dendrobatidis (Bd) infection rates in Jamaican frogs—one of the most threatened amphibian fauna in the world. The majority of species we surveyed were terrestrial direct‐developing frogs or frogs that breed in tank bromeliads, rather than those that use permanent water bodies to breed. Thus, we were able to investigate the climatic correlates of Bd infection in a frog assemblage that does not rely on permanent water bodies. We sampled frogs for Bd across all of the major habitat types on the island, used machine learning algorithms to identify climatic variables that are correlated with infection rates, and extrapolated infection rates across the island. We compared the effectiveness of the machine learning algorithms for species distribution modeling in the context of our study, and found that infection rate rose quickly with precipitation in the driest month. Infection rates also increased with mean temperature in the warmest quarter until 22 °C, and remained relatively level thereafter. Both of these results are in accordance with previous studies of the physiology of Bd. Based on our environmental results, we suggest that frogs occupying high‐precipitation habitats with cool rainy‐season temperatures, though zcurrently experiencing low frequencies of infection, may experience an increase in infection rates as global warming increases temperatures in their habitat.  相似文献   

9.
10.
Among vertebrates, comparable spatial learning abilities have been found in birds, mammals, turtles and fishes, but virtually nothing is known about such abilities in amphibians. Overall, amphibians are the most sedentary vertebrates, but poison frogs (Dendrobatidae) routinely shuttle tadpoles from terrestrial territories to dispersed aquatic deposition sites. We hypothesize that dendrobatid frogs rely on learning for flexible navigation. We tested the role of experience with the local cues for poison frog way-finding by (i) experimentally displacing territorial males of Allobates femoralis over several hundred metres, (ii) using a harmonic direction finder with miniature transponders to track these small frogs, and (iii) using a natural river barrier to separate the translocated frogs from any familiar landmarks. We found that homeward orientation was disrupted by the translocation to the unfamiliar area but frogs translocated over similar distances in their local area showed significant homeward orientation and returned to their territories via a direct path. We suggest that poison frogs rely on spatial learning for way-finding in their local area.  相似文献   

11.
We measured temperature preferences of 12 species of hylid frogs (Litoria and Cyclorana) from northern Australia in a laboratory thermal gradient. These species represented a range of ecological habitat use (aquatic, terrestrial, arboreal), adult body size (0.5-60 g), and cutaneous resistance to water loss (Rc=0.6-63.1 s cm-1). We found significant differences among species in selected skin temperature and gradient temperature but not in the variances of these measures (an index of precision of temperature selection). The species' differences correlated significantly with cutaneous resistance to water loss, with more-resistant frogs selecting higher skin and substrate temperatures in the thermal gradient, even after phylogenetic relationships are taken into account. Because cutaneous resistance to water loss also correlates with ecological habit (arboreal>terrestrial>aquatic), we suggest that their higher resistance to water loss allows arboreal and terrestrial species better ability to tolerate high temperatures, where growth or locomotory speed may be higher, without the associated risk of desiccation.  相似文献   

12.
Green tree frogs, Litoria caerulea, in the wet-dry tropics of northern Australia remain active during the dry season with apparently no available water and temperatures that approach their lower critical temperature. We hypothesized that this surprising activity might be because frogs that are cooled during nighttime activity gain water from condensation by returning to a warm, humid tree hollow. We measured the mass gained when a cool frog moved into either a natural or an artificial hollow. In both hollows, water condensed on cool L. caerulea, resulting in water gains of up to 0.93% of body mass. We estimated that the water gained was more than the water that would be lost to evaporation during activity. The use of condensation as a means for water gain may be a significant source of water uptake for species like L. caerulea that occur in areas where free water is unavailable over extended periods.  相似文献   

13.
  • 1.1. Water absorption response (WR) behavior and water weight gain were examined in hydrated toads, Bufo woodhousei, treated with angiotensin II (All) or with a control Ringer's solution. The effects of urinary bladder condition (ad lib. bladder urine or empty bladder) were examined concurrently.
  • 2.2. Toads treated with All (100μg/100g body weight), spent more time in WR posture and absorbed more water than Ringer's-injected toads.
  • 3.3. Toads with empty bladders maintained WR posture for longer periods of time and gained more weight than toads whose bladders were not emptied.
  • 4.4. The effects of All and bladder urine on water absorption by B. woodhousei appear to be separate and additive.
  相似文献   

14.
Three species of amphibious sea kraits (Laticauda spp.) require drinking freshwater to regulate water balance. The extent of terrestriality is known to differ among them. Species with higher extent of terrestriality would drink freshwater accumulated on land, whereas less terrestrial species would rely totally on freshwater that runs into the sea. Consequently, we predicted that the latter species might have a better ability to follow the flow of freshwater or lower salinity water in the sea than the former. We investigated the freshwater discrimination ability of three sea krait species, using a Y-maze apparatus. We found that Laticauda semifasciata and Laticauda laticaudata, less terrestrial species, followed freshwater significantly more frequently than seawater, whereas Laticauda colubrina, more terrestrial species, unbiasedly selected freshwater and seawater. This result supports our prediction and suggests that less terrestrial sea kraits more efficiently access freshwater sources in the sea than highly terrestrial sea kraits. It is likely that behavioral rehydration systems vary among sea kraits in relation to their terrestrial tendency.  相似文献   

15.
16.
Huia cavitympanum, an endemic Bornean frog, is the first amphibian species known to emit exclusively ultrasonic (i.e., >20 kHz) vocal signals. To test the hypothesis that these frogs use purely ultrasonic vocalizations for intraspecific communication, we performed playback experiments with male frogs in their natural calling sites. We found that the frogs respond with increased calling to broadcasts of conspecific calls containing only ultrasound. The field study was complemented by electrophysiological recordings from the auditory midbrain and by laser Doppler vibrometer measurements of the tympanic membrane''s response to acoustic stimulation. These measurements revealed that the frog''s auditory system is broadly tuned over high frequencies, with peak sensitivity occurring within the ultrasonic frequency range. Our results demonstrate that H. cavitympanum is the first non-mammalian vertebrate described to communicate with purely ultrasonic acoustic signals. These data suggest that further examination of the similarities and differences in the high-frequency/ultrasonic communication systems of H. cavitympanum and Odorrana tormota, an unrelated frog species that produces and detects ultrasound but does not emit exclusively ultrasonic calls, will afford new insights into the mechanisms underlying vertebrate high-frequency communication.  相似文献   

17.
During the summer and fall of 1984 and 1985, the eutrophic Lake Akersvatn in south-eastern Norway, used as reserve drinking water reservoir, was found to produce heavy water-blooms of the colonial blue-green alga Microcystis aeruginosa. Samples of the water-bloom were found to be toxic using the mouse bioassay. No toxin was found free in the water as detected by HPLC and mouse bioassay. The toxic cells (minimum lethal dose 8–15 mg/kg body weight in mice) and purified toxin (minimum lethal dose 50 μg/kg body weight in mice) showed signs of poisoning in laboratory rats and mice identical to that of other hepatotoxin-producing M. aeruginosa blooms and strains reported from other parts of the world. The toxin has chemical properties similar to the cyclic heptapeptide reported for a South African M. aeruginosa toxin. The toxin from Lake Akersvatn bloom material has a molecular weight of 994. The toxic bloom of M. aeruginosa persisted from August to November in 1984 and reappeared in July of 1985. While water from Lake Akersvatn was not used for municipal water supply during this period, the presence of toxic blue-green algae in a drinking water reservoir indicates the need to develop monitoring and detection methods for toxic cells and toxin(s).  相似文献   

18.
The Old World tree frogs (Anura: Rhacophoridae), with 387 species, display a remarkable diversity of reproductive modes – aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well‐resolved phylogeny from which we determine major patterns of reproductive‐mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral‐state reconstructions suggest that terrestrial gel‐encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of terrestrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being terrestrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently. Evolution from a fully aquatic reproductive mode to more terrestrial modes (direct development and foam nesting) occurs through intermediate gel nesting ancestral forms. This suggests that gel nesting is not only a possible transitional state for the evolution of terrestriality, but also that it is a versatile reproductive mode that may give rise to other terrestrial reproductive modes. Evolution of foam nesting may have enabled rhacophorids to lay a larger number of eggs in more open and drier habitats, where protection from desiccation is important. Terrestrial direct development allows frogs to lay eggs independent of bodies of water, in a diversity of humid habitats, and may represent a key innovation that facilitated the evolution of nearly half of all known rhacophorid species.  相似文献   

19.
Parasites that are carried by invasive species can infect native taxa, with devastating consequences. In Australia, invading cane toads (Rhinella marina) carry lungworm parasites (Rhabdias pseudosphaerocephala) that (based on previous laboratory studies) can infect native treefrogs (Litoria caerulea and L. splendida). To assess the potential of parasite transmission from the invader to the native species (and from one infected native frog to another), we used surveys and radiotelemetry to quantify anuran microhabitat use, and proximity to other anurans, in two sites in tropical Australia. Unsurprisingly, treefrogs spent much of their time off the ground (especially by day, and in undisturbed forests) but terrestrial activity was common at night (especially in anthropogenically modified habitats). Microhabitat overlap between cane toads and frogs was generally low, except at night in disturbed areas, whereas overlap between the two frog species was high. The situations of highest overlap, and hence with the greatest danger of parasite transmission, involve aggregations of frogs within crevices by day, and use of open ground by all three anuran species at night. Overall, microhabitat divergence between toads and frogs should reduce, but not eliminate, the transmission of lungworms from invasive toads to vulnerable native frogs.  相似文献   

20.
1. Water and electrolyte reabsorption of the urinary bladder epithelia has been studied in intact, fully hydrated frogs (Rana temporaria, R. lessonae, R. ridibunda). 2. The rates of water reabsorption were lower in frogs on wet soil than in those on dry soil and related to the degree of terrestrialism: R. temporaria greater than R. lessonae greater than R. ridibunda. 3. Samples of urine stored up to 24 hr within the urinary bladder were analysed for osmolality and the concentration of urea, ammonia, sodium, potassium, magnesium and calcium. 4. Selective reabsorption of sodium was detected in all species, that of calcium only in R. ridibunda. The efficiency of electrolyte reabsorption was also related to the degree of terrestrialism. 5. In conclusion, in fully hydrated frogs reabsorption by the bladder epithelia contributes significantly to the water and electrolyte conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号