首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Retinoic acid receptor (RAR) α and γ mRNAs were constitutively expressed in B16 melanoma cells with or without retinoic acid (RA) treatment. RARβ mRNA, however, was significantly expressed only after exposure to RA. Induction of RARβ by RA occurred within 1 h and was not inhibited by cycloheximide (i.e., did not require new protein synthesis). All three RAR mRNA levels were dramatically decreased with 8-bromo-cyclic AMP treatment and could not be rescued by addition of RA. Analysis of RARγ revealed that this decrease occurred within 1 h of exposure to 8-bromo-cyclic AMP and was not blocked by simultaneous treatment with cycloheximide. The stability of RARγ mRNA was not altered by cyclic AMP treatment. Nuclear extracts from 8-bromo-cyclic AMP-treated cells showed a large decrease in protein binding to a retinoic acid response element (RARE) oligonucleotide compared to control cells. This correlated with a marked reduction of RA-stimulated RARE-reporter gene activity in transfected cells which were treated with cyclic AMP. Pretreatment of B16 cells with cyclic AMP prior to RA addition dramatically reduced induction of PKCα, an early marker of RA-induced cell differentiation. Thus, cyclic AMP can antagonize the action of RA most likely via its ability to inhibit RAR expression. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-kappaB ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.  相似文献   

4.
5.
Nuclear receptors (RARs) for retinoic acid (RA) are considered to be the ultimate mediators of the action of RA in the control of cell differentiation and inhibition of tumorigenesis. We have isolated and partially purified and characterized RAR from a RA-responsive tissue, chick embryo skin. The purification steps included Affi-Gel blue chromatography, ultrafiltration, size exclusion chromatography, and preparative isoelectric focusing. The electrofocusing of RAR-[3H]RA complex in ampholines (pH 3-10) revealed that the receptors have an isoelectric pH of 7.5. Whereas pronase-digested the RAR-[3H]RA complex completely, DNase showed 20-35% and RNase showed negligible digestive action on the complex. The ligand binding to RAR was completely inhibited by a mercury compound. RAR-alpha- and RAR-beta-specific antibodies, on Western blot analysis, immunoreacted with a protein having a molecular weight of 50,000, presumably RAR. Binding affinity studies revealed that biologically active analogs of RA with a free COOH group (e.g., 13-cis-RA, RO-13-7410, Ch 55, and Am 80) showed, like RA, high binding affinity for RAR, whereas biologically ineffective analogs of RA (e.g., furyl and pyridyl) were poor binders. Other groups of retinoids, in which the COOH group was either lacking or blocked, did not bind to RAR whether or not they were biologically active.  相似文献   

6.
7.
A role for retinoic acid in regulating the regeneration of deer antlers   总被引:14,自引:0,他引:14  
Deer antlers are the only mammalian organs that can be repeatedly regenerated; each year, these complex structures are shed and then regrow to be used for display and fighting. To date, the molecular mechanisms controlling antler regeneration are not well understood. Vitamin A and its derivatives, retinoic acids, play important roles in embryonic skeletal development. Here, we provide several lines of evidence consistent with retinoids playing a functional role in controlling cellular differentiation during bone formation in the regenerating antler. Three receptors (alpha, beta, gamma) for both the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families show distinct patterns of expression in the growing antler tip, the site of endochondral ossification. RAR alpha and RXR beta are expressed in skin ("velvet") and the underlying perichondrium. In cartilage, which is vascularised, RXR beta is specifically expressed in chondrocytes, which express type II collagen, and RAR alpha in perivascular cells, which also express type I collagen, a marker of the osteoblast phenotype. High-performance liquid chromatography analysis shows significant amounts of Vitamin A (retinol) in antler tissues at all stages of differentiation. The metabolites all-trans-RA and 4-oxo-RA are found in skin, perichondrium, cartilage, bone, and periosteum. The RXR ligand, 9-cis-RA, is found in perichondrium, mineralised cartilage, and bone. To further define sites of RA synthesis in antler, we immunolocalised retinaldehyde dehydrogenase type 2 (RALDH-2), a major retinoic acid-generating enzyme. RALDH-2 is expressed in the skin and perichondrium and in perivascular cells in cartilage, although chondroprogenitors and chondrocytes express very low levels. At sites of bone formation, differentiated osteoblasts which express the bone-specific protein osteocalcin express high levels of RALDH2. The effect of RA on antler cell differentiation was studied in vitro; all-trans-RA inhibits expression of the chondrocyte phenotype, an effect that is blocked by addition of the RAR antagonist Ro41-5253. In monolayer cultures of mesenchymal progenitor cells, all-trans-RA increases the expression of alkaline phosphatase, a marker of the osteoblastic phenotype. In summary, this study has shown that antler tissues contain endogenous retinoids, including 9-cis RA, and the enzyme RALDH2 that generates RA. Sites of RA synthesis in antler correspond closely with the localisation of cells which express receptors for these ligands and which respond to the effects of RA.  相似文献   

8.
Transcriptional control of c-jun by retinoic acid.   总被引:10,自引:4,他引:6       下载免费PDF全文
  相似文献   

9.
F9 embryonal carcinoma cells differentiate in response to retinoic acid (RA). To investigate the regulation of RA receptors (RARs) expression during this process, cDNA probes specific for the major RAR isoforms were used. In contrast to the level of RARβ2 mRNA which was high in cells treated 5 days with RA and below detection in untreated cells, as previously described, the steady state levels of RARα1, α2, γl, and γ2 mRNAs were markedly decreased in the RA-differentiated cells as compared to untreated cells. The down-regulation of the RA-responsive system in differentiated cells was also evident in gel shift assays as a marked decrease in binding capacity to a retinoid acid response element (βRARE), as well as in chloramphenicol acetyltransferase (CAT) assays as a sixfold decrease in RA-mediated transacting activity via this element. The down-regulation of RAR DNA-binding and transacting activity coincided with the burst in tissue plasminogen activator secretion and thus, occurred at the hinge between early and late differentiation. The down-regulation of RA responsiveness may constitute an important event in the transition between early and late differentiation stage in F9 cells. © 1993 Wiley-Liss, Inc.  相似文献   

10.
11.
12.
F9 embryonic teratocarcinoma stem cells differentiate into an epithelial cell type called extraembryonic endoderm when treated with retinoic acid (RA), a derivative of retinol (vitamin A). This differentiation is presumably mediated through the actions of retinoid receptors, the RARs and RXRs. To delineate the functions of each of the different retinoid receptors in this model system, we have generated F9 cell lines in which both copies of either the RAR alpha gene or the RAR gamma gene are disrupted by homologous recombination. The absence of RAR alpha is associated with a reduction in the RA-induced expression of both the CRABP-II and Hoxb-1 (formerly 2.9) genes. The absence of RAR gamma is associated with a loss of the RA-inducible expression of the Hoxa-1 (formerly Hox-1.6), Hoxa-3 (formerly Hox-1.5), laminin B1, collagen IV (alpha 1), GATA-4, and BMP-2 genes. Furthermore, the loss of RAR gamma is associated with a reduction in the metabolism of all-trans-RA to more polar derivatives, while the loss of RAR alpha is associated with an increase in metabolism of RA relative to wild-type F9 cells. Thus, each of these RARs exhibits some specificity with respect to the regulation of differentiation-specific gene expression. These results provide an explanation for the expression of multiple RAR types within one cell type and suggest that each RAR has specific functions.  相似文献   

13.
14.
Retinoids inhibit the growth and enhance the differentiation of murine S91-C2 melanoma cells. Specific alterations in gene expression are a plausible mechanism for these effects. Since nuclear retinoic acid receptors (RAR) are likely mediators of retinoid-induced changes in gene expression, we used Northern blotting to analyze the expression of RAR alpha, RAR beta, and RAR gamma in S91-C2 cells. mRNA for both RAR alpha and RAR gamma was detected in these cells, but no RAR beta mRNA could be found. Treatment with 10(-7) and 10(-6) M beta-all-trans-retinoic acid (RA) for 24 h caused a 1.5- to 2-fold increase in RAR alpha and RAR gamma mRNA, whereas lower concentrations of RA were ineffective. RAR beta mRNA, which was undetectable in untreated cells, was detected after 24 h of treatment with a RA concentration as low as 10(-9) M, and its level increased with up to 10(-6) M RA. At the latter dose, RAR beta mRNA induction occurred by 4 h and increased progressively, reaching a plateau after 24 h of treatment. RAR beta mRNA induction at 4 h was not inhibited by cycloheximide at a concentration that suppressed protein synthesis by more than 90%. Several retinoids and related synthetic compounds, including 13-cis RA, TTNPB, Ch55, Am80, and the trifluoromethyl nonyloxyphenyl analog of RA, also induced RAR beta mRNA, whereas a 24-h treatment with 10(-6) M retinol, TTNP (a decarboxylated analog of TTNPB), or the phenyl analog of RA failed to induce RAR beta mRNA. With the exception of retinol and the trifluoromethyl nonyloxyphenyl analog of RA, the ability of the retinoids to induce RAR beta mRNA and their growth inhibitory effect were correlated. However, S91-C154, a RA-resistant mutant subclone derived from S91-C2 cells, showed mRNA levels of RAR alpha and RAR gamma and induction of RAR beta by RA similar to those detected in the sensitive S91-C2 cells. Like the S91 melanoma cells, two other mouse melanoma cell lines, K-1735P and B16-F1, constitutively expressed RAR alpha and RAR gamma mRNAs. The level of RAR beta mRNA was increased by RA only in B16-F1 cells, although the growth of both was inhibited by RA. These results demonstrate that RA can, directly and rapidly, induce the expression of mRNA for a high affinity nuclear receptor in some murine melanoma cells and that this induction is not sufficient to inhibit growth.  相似文献   

15.
16.
17.
18.
Retinoic acid (RA) has been detected in the regenerating limb of the axolotl, and exogenous RA can proximalize, posteriorize, and ventralize blastemal cells. Thus, RA may be an endogenous regulatory factor during limb regeneration. We have investigated whether endogenous retinoids are essential for patterning during axolotl (Ambystoma mexicanum) limb regeneration by using retinoid antagonists that bind to specific RAR (retinoic acid receptor) or RXR (retinoid X receptor) retinoid receptor subtypes. Retinoid antagonists (Ro41-5253, Ro61-8431, LE135, and LE540) were administered to regenerating limbs using implanted silastin blocks loaded with each antagonist. The skeletal pattern of regenerated limbs treated with Ro41-5253 or Ro61-8431 differed only slightly from control limbs. Treatment with LE135 inhibited limb regeneration, while treatment with LE540 allowed relatively normal limb regeneration. When LE135 and LE540 were implanted together, regeneration was not completely inhibited and a hand-like process regenerated. These results demonstrate that interfering with retinoid receptors can modify pattern in the regenerating limb indicating that endogenous retinoids are important during patterning of the regenerating limb.  相似文献   

19.
20.
Retinoid X receptors (RXRs) heterodimerize with multiple nuclear hormone receptors and are thought to exert pleiotropic functions. To address the role of RXRs in retinoic acid- (RA) mediated gene regulation, we designed a dominant negative RXR beta. This mutated receptor, termed DBD-, lacked the DNA binding domain but retained the ability to dimerize with partner receptors, resulting in formation of nonfunctional dimers. DBD- was transfected into P19 murine embryonal carcinoma (EC) cells, in which reporters containing the RA-responsive elements (RAREs) were activated by RA through the activity of endogenous RXR-RA receptor (RAR) heterodimers. We found that DBD- had a dominant negative activity on the RARE reporter activity in these cells. P19 clones stably expressing DBD- were established; these clones also failed to activate RARE-driven reporters in response to RA. Further, these cells were defective in RA-induced mRNA expression of Hox-1.3 and RAR beta, as well as in RA-induced down-regulation of Oct3 mRNA. Gel mobility shift assays demonstrated that RA treatment of control P19 cells induces RARE-binding activity, of which RXR beta is a major component. However, the RA-induced binding activity was greatly reduced in cells expressing DBD-. By genomic footprinting, we show that RA treatment induces in vivo occupancy of the RARE in the endogenous RAR beta gene in control P19 cells but that this occupancy is not observed with the DBD- cells. These data provide evidence that the dominant negative activity of DBD- is caused by the lack of receptor binding to target DNA. Finally, we show that in F9 EC cells expression of DBD- leads to inhibition of the growth arrest that accompanies RA-induced differentiation. Taken together, these results demonstrate that RXR beta and partner receptors play a central role in RA-mediated gene regulation and in the control of growth and differentiation in EC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号