首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
DNA was analysed from a large set of hamster hprt gene mutants, some induced by ionising radiations and others occurring naturally, to identify those with large alterations in part of the gene. DNA from these mutants was restricted further with different endonucleases and probed to establish the patterns of restriction fragments remaining. Of 15 mutants characterized, one showed a duplication of part of the 5' end of the gene, and the remainder showed deletions of various sizes. It was possible to approximately locate the breakpoints of the deletions by comparison of fragment patterns to a recently-established map of the hamster gene. The relatively small number of mutants examined precludes rigorous analysis of the distribution of breakpoints in the hprt gene, but taken with other recent studies of deletion mutagenesis it is suggested that non-random induction or selection of this type of mutation may occur.  相似文献   

2.
Independent spontaneous or ethyl methanesulphonate (EMS)-induced mutants lacking HPRT enzyme activity were analysed for changes in hprt gene structure. Of 21 spontaneous mutants, 6 had total gene deletions, 2 had partial gene deletions, and 13 were indistinguishable from wild-type by Southern analysis. In contrast a sample of 23 EMS-induced mutants, each of which showed potentially interesting characteristics (e.g. high reversion frequency, X-chromosome rearrangement), showed no detectable hprt gene changes. RNA isolated from 59 mutants with presumptive point mutations (13 spontaneous, 46 EMS-induced) was analysed on dot blots for changes in the amount of hprt mRNA. A wide range of mRNA levels was found, from mutants with undetectable amounts to those with more than wild-type amounts. However, Northern blots of all these mutant RNAs revealed only one (EMS-induced) mutation with a change in hprt mRNA size. Taken with our previously-published data on these mutants, it is argued that they represent a broad range of mutational types, and that the hprt gene mutation system provides a sensitive means of distinguishing mutational spectra of different DNA-damaging agents.  相似文献   

3.
The structure of thyroglobulin mRNA was analyzed in an inbred herd of Afrikander cattle with hereditary goitre. Northern transfer of RNA from affected animals revealed both a shorter (approximately 7100 bases) and a normal-sized (approximately 8200 bases) thyroglobulin mRNA when hybridized to bovine thyroglobulin cDNA clones. S1 nuclease mapping experiments established that 1100 bases are deleted in the 5' region of the smaller mRNA. Electron microscopy of RNA from animals with goitre hybridized to a bovine genomic DNA clone showed that the region deleted corresponds to exon 9 of the thyroglobulin gene. Southern blot analysis of the exon 9 region revealed differences between affected and control animals with the enzymes PstI and TaqI. Although they could reflect a linkage disequilibrium between the mutation and restriction fragment length polymorphism, it is noteworthy that these differences map in the region of the exon 9/intron 9 junction. Our results show that a genetic lesion in the thyroglobulin gene causes aberrant splicing of the pre-mRNA, and suggest that the responsible mutation is at the exon 9/intron 9 junction.  相似文献   

4.
5.
Mutations in the hprt gene in T-lymphocyte clones isolated from primary cultures treated with the (+)-anti enantiomer of 7,8-dihydroxy-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene (BPDE) in vitro, and from untreated control cultures, were characterized using polymerase chain reaction and direct sequencing of hprt cDNA and genomic fragments. The spectrum of BPDE-induced mutations was very specific and clearly different from the background spectrum, which comprised many different types of mutations. Of the BPDE-induced mutations, 20/22 were transversions of GC base pairs and 18/22 were GC greater than TA transversions, which is in agreement with what has been found in other mammalian systems. While no particular 'hotspot' was observed for BPDE in the hprt gene, a sequence context specificity was detected. Ten of the 14 BPDE-induced mutations in the coding region were located in the sequence context AGG, and 2 in AG dinucleotides, which indicates that such sequences are sensitive to BPDE mutagenesis. Nine of the 22 BPDE-induced mutations and 2/12 background point mutations caused mRNA splicing errors. Six of the BPDE-induced splicing errors were caused by GC greater than TA transversions in the AG dinucleotide of different splice acceptor sites, which indicates that these sites may be frequent targets of BPDE mutagenesis. All mutated GC base pairs in the BPDE-induced spectrum were oriented so that the guanine was located on the non-transcribed strand. Assuming that the premutagenic lesion in these cases was covalent binding of BPDE to guanine and that BPDE bound randomly to both strands, the strand specificity of the BPDE-induced mutations indicates that preferential excision repair of BPDE adducts on the transcribed strand occurs in the hprt gene in human T-cells.  相似文献   

6.
Nitropyrene, the predominant nitropolycyclic hydrocarbon found in diesel exhaust, is a mutagenic and tumorigenic environmental pollutant that requires metabolic activation via nitroreduction and ring oxidation. In order to determine the role of ring oxidation in the mutagenicity of 1-nitropyrene, its oxidative metabolites, 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide, were synthesized and their mutation spectra were determined in the coding region of hprt gene of CHO cells by a PCR amplification of reverse-transcribed hprt mRNA, followed by a DNA sequence analysis. A comparison of the two metabolites for mutation frequencies showed that 1-nitropyrene 9,10-oxide was 2-times higher than 1-nitropyrene 4,5-oxide. The mutation spectrum for 1-nitropyrene 4,5-oxide was base substitutions (33/49), one base deletions (11/49) and exon deletions (5/49). In the case of 1-nitropyrene 9,10-oxide, base substitutions (27/50), one base deletions (15/50), and exon deletions (8/50) were observed. Base substitutions were distributed randomly throughout the hprt gene. The majority of the base substitutions in mutant from 1-nitropyrene 4,5-oxide treated cells were A-->G transition (15/33) and G-->A transition (8/33). The predominant base substitution, A-->G transition (11/27) and G-->A transition (8/27), were also observed in mutant from 1-nitropyrene 9,10-oxide treated cells. The mutation at the site of adenine and guanine was consistent with the previous results, where the sites of DNA adduct formed by these compounds were predominant at the sites of purines. A comparison of the mutational patterns between 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide showed that there were no significant differences in the overall mutational spectrum. These results indicate that each oxidative metabolite exhibits an equal contribution to the mutagenicity of 1-nitropyrene, and ring oxidation of 1-nitropyrene is an important metabolic pathway to the formation of significant lethal DNA lesions.  相似文献   

7.
8.
We have previously reported the isolation of mammalian cell lines expressing the 3-methyladenine DNA glycosylase I (tag) gene from E. coli. These cells are 2-5 fold more resistant to the toxic effects of methylating agents than normal cells (15). Kinetic measurements of 3-methyladenine removal from the genome in situ show a moderate (3-fold) increase in Tag expressing cells relative to normal as compared to a high (50-fold) increase in exogenous alkylated DNA in vitro by cell extracts. Excision of 7-methylguanine is as expected, unaffected by the tag+ gene expression. The frequency of mutations formed in the hypoxanthine phosphoribosyl transferase (hprt) locus was investigated after methylmethanesulfonate (MMS), ethylmethanesulfonate (EMS), N-nitroso-N-methylurea (NMU) and N-nitroso-N-ethylurea (NEU) exposure. Tag expression reduced the frequency of MMS and EMS induced mutations to about half the normal rate, whereas the mutation frequency in cells exposed to NMU or NEU is not affected by the tag+ gene expression. These results indicate that after exposure to compounds which produce predominantly N-alkylations in DNA, a substantial proportion of the mutations induced is formed at 3-alkyladenine residues in DNA.  相似文献   

9.
Mutation at the hprt locus of Chinese hamster V79 cells were induced by treatment with ethyl methanesulphonate (EMS), considered primarily a point mutagen and mitomycin C (MMC), a potent clastogen. EMS gave a dose-dependent induction of mutants while MMC induced a poor mutagenic response. Mutations were analysed using Southern and Northern blotting.Analysis of 9 EMS-induced and 4 spontaneous mutants yielded no detectable alterations in the hprt locus after digestion of DNA with 6 restriction enzymes. Mutants without detectable changes carried presumptive point mutations. In contrast, 4 out of 12 MMC-induced mutants had detectable alterations. 2 of these appeared to have lost the entire hprt gene while the other 2had prodable partial deletions. For these 4 deletion mutants no hprt mRNA was detected. 3 MMC-induced and 1 EMS-induced mutants had reduced levels of hprt mRNA. All the other mutants showed normal levels of hprt mRNA and the message detected was always of the correct size.It is suggested that the poor mutagenic response induced by MMC may be due to the lethal nature of large deletions involving both the hemizygous hprt locus and adjacent essential genes. This may lead to an underestimate of the mutagenicity of clastogenic agents such as MMC in the V79 HPRT mutation assay.  相似文献   

10.
We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.  相似文献   

11.
12.
The capacity of the topoisomerase I inhibitor camptothecin (CPT) to induce single locus mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene and the DNA changes underlying induced mutations were analysed in Chinese hamster ovary cells. Camptothecin treatments increased hprt mutations up to 50-fold over the spontaneous levels at highly cytotoxic doses. Genomic DNA was isolated from 6-thioguanine resistant clones and subjected to multiplex PCR to screen for gross alterations in the gene structure. The molecular analysis revealed that deletion mutants represented 80% of the analysed clones, including total hprt deletion, multiple and single exon deletions. Furthermore, a fraction of the analysed clones showed deletions of more than one exon that were characterised by the absence of non-contiguous exons. These data show that single locus mutations induced by camptothecin are characterised by large deletions or complex rearrangements rather than single base substitutions and suggest that the recombinational repair of camptothecin-induced strand breaks at replication fork may be involved in the generations of these alterations at the chromatin structure level.  相似文献   

13.
J Thacker 《Mutation research》1986,160(3):267-275
DNA from 58 independent HPRT-deficient mutants of V79 hamster cells induced by ionising radiation was analysed by Southern blot hybridization to a full-length hamster hprt cDNA. About half of the gamma-ray-induced mutants (20/43) were apparently total gene deletions, because they lacked all functional hprt gene sequences hybridizing to the cDNA probe. Another 10 mutants showed various partial deletions and/or rearrangements of the hprt gene. The remaining 13 mutants showed no detectable change in comparison to the structure of the normal gene, which correlated well with previous characterization of these mutants indicating that most carry point mutations in the hprt gene. However, it is probable that some of these point mutations occurred spontaneously rather than being radiation-induced. A smaller number of alpha-particle induced mutants gave similar results: out of a total of 15 mutants, 6 appeared to be total gene deletions, 5 had partial deletions and/or rearrangements, and 4 had no detectable changes. Thus, 70% or more of radiation-induced HPRT-deficient mutants arise through large genetic changes, especially deletions of all or part of the hprt gene. This result is to be contrasted with data published previously by ourselves and others indicating that the majority of spontaneous and ethyl methanesulphonate-induced mutations of hprt and similar genes arise by point mutation.  相似文献   

14.
B K?berle  G Speit 《Mutation research》1991,249(1):161-167
The molecular basis of bleomycin (BLM)-induced mutations in the absence and presence of inhibitors of DNA repair was investigated in V79 cells with Southern hybridization techniques. 43% of the BLM-induced thioguanine-resistant mutants suffer from large alterations of hprt DNA sequences. To understand the role of DNA repair in the process of mutagenesis, the effect of inhibitors of DNA repair on the frequency and types of BLM-induced mutations was tested. The inhibitors used were arabinofuranosyl cytosine (araC), didesoxythymidine (ddThd) and 3-aminobenzamide (3AB), which inhibit different steps of excision repair. Only 3AB caused a comutagenic effect. The increased mutation frequency was mainly due to additionally induced gene deletions. In the presence of 3AB, 70% of the HPRT-deficient mutants revealed partial or total deletions of the hprt coding sequences. Thus, it could be shown that BLM induces a broad range of types of mutation and that inhibited repair of BLM-induced DNA damage leads to specific types of mutations.  相似文献   

15.
Dense ionization tracks from high linear energy transfer (LET) radiations form multiple damaged sites (MDS), which involve several types of DNA lesions in close vicinity. The primary DNA damage triggers sensor proteins that activate repair processes, cell cycle control or eventually apoptosis in subsequent cellular responses. The question how homologous recombination (HR) and non-homologous end joining (NHEJ) interact in the repair of radiation-induced DNA damage of MDS type has been addressed in different model systems but several questions remain to be answered. We have therefore challenged cells with treatments of ionizing radiation of different qualities to investigate whether primary DNA damages of different complexity are reflected in the processes of repair by HR as well as cell survival. We used the V79 derived SPD8 cell line to determine the induction of HR in the hprt exon 7 and clonogenic assay for survival in response to radiation. SPD8 cells were irradiated with gamma-rays (137Cs 0.5 keV/microm), boron ions (40 and 80 keV/microm) and nitrogen ions (140 keV/microm), with doses up to 5 Gy. Analysis of clonogenic survival showed that B-ions (80 keV/microm) and N-ions were more toxic than gamma-rays, 4.1 and 5.0 times respectively, while B-ions at 40 keV/microm were 2.0 times as toxic as gamma-rays. Homologous recombination in the cells exposed to B-ions (80 keV/microm) increased 2.9 times, a significant response as compared to cells exposed to gamma-rays, while for B-ions (40 keV/microm) and N-ions a nonsignificant increase in HR of 1.2 and 1.4, respectively, was observed. We hypothesize that the high-LET generated formation of MDS is responsible for the enhanced cytotoxicity as well as for the mobilization of the HR machinery.  相似文献   

16.
17.
18.
A step-wise method for cloning intron-containing genes from genomic DNA is described. The two exons of the human proinsulin gene were separately amplified in two steps using, in the first step, completely homologous primers. This reduces unwanted interactions between mismatched primers and a complex DNA template such as genomic DNA. The fragments were amplified in a second step polymerase chain reaction (PCR) using mismatched primers that incorporated additional bases complementary to the other exon, and these products were spliced together in a third step PCR.  相似文献   

19.
Mutant V.24.1, a temperature-sensitive derivative of Chinese hamster ovary cells, defines the End4 complementation group of mutants selected for resistance to protein toxins and has defective lysosomes at the restrictive temperature (P. A. Colbaugh, M. Stookey, and R. K. Draper, J. Cell Biol. 108:2211-2219, 1989). We have investigated the biosynthesis of Sindbis virus envelope glycoproteins in V.24.1 cells. When the cells were infected at the restrictive temperature, the envelope glycoproteins E1 and E2 were undetectable on the cell surface and proteolytic processing of the precursor protein pE2 to envelope protein E2 did not occur. Protein retained intracellularly was sensitive to endoglycosidase H and, by immunofluorescence localization, appeared to accumulate in the endoplasmic reticulum. We conclude that the genetic defect in V.24.1 cells impairs the transport of Sindbis virus glycoproteins, apparently at the level of export from the endoplasmic reticulum.  相似文献   

20.
G C Roberts  C Gooding    C W Smith 《The EMBO journal》1996,15(22):6301-6310
Alternative splicing is a common mechanism for regulating gene expression in different cell types. In order to understand this important process, the trans-acting factors that enforce the choice of particular splicing pathways in different environments must be identified. We have used the rat alpha-tropomyosin gene as a model system of tissue-specific alternative splicing. Exon 3 of alpha-tropomyosin is specifically inhibited in smooth muscle cells allowing the alternative inclusion of exon 2. We have used a novel gene transfer and selection strategy to detect a gene whose expression in fibroblasts is sufficient to switch them to smooth muscle-specific splicing of alpha-tropomyosin and also alpha-actinin. Extracts from the regulating fibroblasts contain an apparently novel 55 kDa protein which binds to RNA elements required for regulation of tropomyosin splicing. This protein is not detected in extracts of non-regulating cells and is therefore a strong candidate cell-specific splicing regulator. These experiments advance our understanding of smooth muscle splicing regulation as well as establishing a means for direct cloning of tissue-specific splicing regulators which have so far been refractory to biochemical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号