首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glial cell processes are part of the synaptic structure and sense spillover of transmitter, while some glial cells can even receive direct synaptic input. Here, we report that a defined type of glial cell in the medial nucleus of the trapezoid body (MNTB) receives excitatory glutamatergic synaptic input from the calyx of Held (CoH). This giant glutamatergic terminal forms an axosomatic synapse with a single principal neuron located in the MNTB. The NG2 glia, as postsynaptic principal neurons, establish synapse-like structures with the CoH terminal. In contrast to the principal neurons, which are known to receive excitatory as well as inhibitory inputs, the NG2 glia receive mostly, if not exclusively, α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor–mediated evoked and spontaneous synaptic input. Simultaneous recordings from neurons and NG2 glia indicate that they partially receive synchronized spontaneous input. This shows that an NG2+ glial cell and a postsynaptic neuron share presynaptic terminals.  相似文献   

2.
Dramatic morphogenetic processes underpin nearly every step of nervous system development, from initial neuronal migration and axon guidance to synaptogenesis. Underlying this morphogenesis are dynamic rearrangements of cytoskeletal architecture. Here we discuss the roles of the actin cytoskeleton in the development of presynaptic terminals, from the elaboration of terminal arbors to the recruitment of presynaptic vesicles and active zone components. The studies discussed here underscore the importance of actin regulation at every step in neuronal circuit assembly.  相似文献   

3.
Dorsal unpaired median (DUM) neurones in the abdominal ganglia of the locust were impaled with microelectrodes and some were injected intracellularly with horseradish peroxidase so that their synapses could be identified in the electron microscope. Simultaneous recordings from DUM neurones in different abdominal ganglia revealed that they received common postsynaptic potentials from descending interneurones. Post-embedding immunocytochemistry using antibodies against GABA and glutamate was carried out on ganglia containing HRP-stained neurones. GABA-like immunoreactivity was found in 39% (n=82) of processes presynaptic to abdominal DUM neurones and glutamate-like immunoreactivity in 21% (n=42) of presynaptic processes. Output synapses from the DUM neurites were rarely observed within the neuropile. Structures resembling presynaptic dense bars but not associated with synaptic vesicles, were seen in some large diameter neurites.  相似文献   

4.
It is suggested that the term neurotransmission, which is used to designate neuronal communication at synaptic level, be associated to the less restrictive term neuromodulation. These two types of intercellular communication seem in fact to be two basically different mechanisms, both of which contribute to neuronal integration. The integration of neuronal information at cellular level appears to be more complex than the simple addition of excitatory plus inhibitory influences eliciting postsynaptic responses. Evidence has been obtained that non synaptic transmission can alter the capacity of a given synapse to transfer neuronal information from the presynaptic element to the postsynaptic neuron. For instance, presynaptic mechanisms provide evidence for the functional independence of the nerve terminals, since the release of neuromediators by the latter is sometimes independent of the axonal firing rate. Similarly, the somato-dendritic part of some neurons exhibits intrinsic functions, such as a dendritic release of neuromediator, suggesting that the control of the axonal firing rate takes place partly at this somato-dendritic level and does not depend for the totality on afferent axonic information. The intercellular operations which organize individual neurons into neuronal networks will also occur either at somato-dendritic level or at the level of specific nerve terminals selected as the result of presynaptic interactions. This integration of neuronal information also seems to take place at postsynaptic level, where cooperative interactions have been shown to occur between various receptors. These mechanisms will function at the level of a single nerve terminal containing more than one neuromediator. Neuromodulation can therefore be said to involve very efficient adaptive processes, which help to account for the fact that such large behavioral responses are expressed by such a small number of neuronal elements.  相似文献   

5.
Motoneurons demonstrate a type of self-sustained firing behavior that seems to be produced by a prolonged period of depolarization caused by intrinsic long-term changes in the motoneuron. Such self-sustained firing behavior has previously been reported in human motor units. The purpose of the present study was to investigate the occurrence of self-sustained firing behavior in older adults. Eight young (mean age 24 yrs) and eight older (mean age 73 yrs) individuals participated in the investigation. While subjects produced light dorsiflexion contractions, a brief vibration stimulus was applied to the tibialis anterior muscle. Motor unit recordings were also obtained from the tibialis anterior muscle. Self-sustained firing behavior was evidenced by the appearance of new motor unit recruitment following vibration, even as the motor units that fired before the vibratory stimulus maintained a steady firing rate. The proportion of motor units exhibiting self-sustained firing activity was similar in both young and older adults (approx. 23% of trials). We conclude that self-sustained firing behavior is a ubiquitous phenomenon that does not seem to be affected by the aging process.  相似文献   

6.
Summary Campaniform sensilla on the trochanter of the mesothoracic legs of the locust were backfilled with cobalt salts or horseradish peroxidase for light and electron microscopy. The distribution of the terminal branches of afferent neurones in the thoracic ganglia were described from wholemount preparations and from thick slices through the ganglia. Ultrathin sections of identified branches were processed with GABA antibodies using a post-embedding immunogold technique and examined in the electron microscope. Input synapses were observed on fine varicose branches in all regions of the terminal arborisations close to the sites of afferent output. The major branches neither make nor receive synapses. Seventy-two percent of the input synapses are made by processes immunoreactive for GABA. Immunoreactive and non-immunoreactive processes synapse onto afferent terminals in close proximity. In some instances GABA-immunoreactive processes presynaptic to an afferent are also presynaptic to a non-immunoreactive presynaptic processes strongly suggesting that different presynaptic influences can interact directly with each other.  相似文献   

7.
The pooled spike trains of correlated presynaptic terminals acting synchronously upon a single neuron are realizations of cluster point processes: the notions of spikes synchronizing in bursts and of points bunching in clusters are conceptually identical. The primary processes constituent specifies the timing of the cluster series; subsidiary processes and poolings specify burst structure and tightness. This representation and the Poisson process representation of independent terminals complete the formal approach to pooled trains. The notions usefulness was illustrated by expressing physiological questions in terms of those constituents, each possessing a clear biological embodiment; constituents provided the control variables in simulations using leaky integrate-and-fire postsynaptic neurons excited by multiple weak terminals. Regular or irregular primary processes and bursts series determined low or high postsynaptic dispersions. When convergent set synchrony increased, its postsynaptic consequences approached those of single powerful synapses; concomitantly, output spike trains approached periodic, quasiperiodic, or aperiodic behaviors. The sequence in which terminals fired within bursts affected the predictee and predictor roles of presynaptic and postsynaptic spikes; when inhibition was added, EPSP and IPSP delays and order were influential (summation was noncommutative). Outputs to different correlations were heterogeneous; heterogeneity was accentuated by conditioning by variables such as DC biases.  相似文献   

8.
This study sought to delineate the presynaptic role of the locus coeruleus (LC) on hindlimb primary afferent terminals. Changes in presynaptic function in response to LC stimulation were assessed by measuring the dorsal root potential (DRP), interaction of LC- and peripherally-evoked DRPs, and intraspinal afferent terminal excitability. LC stimulation in unanesthetized, decerebrate cats produced a sequence of early and late positive DRPs succeeded by a small-sized negative DRP. Conditioning the negative DRPs elicited from individual hindlimb nerve branches with LC stimuli led to a decrease in test DRPs. Similarly, there was a predominant decrease in excitability in both large muscle and cutaneous afferent terminals. These data suggest a presynaptic role of the LC in augmenting afferent impulse transmission, presumably through inhibition of tonically active interneurons having axoaxonic contacts on primary afferents; functionally, presynaptic facilitation.  相似文献   

9.
The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca2+-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.  相似文献   

10.
Lee S  Zhou ZJ 《Neuron》2006,51(6):787-799
Patch-clamp recordings revealed that distal processes of starburst amacrine cells (SACs) received largely excitatory synaptic input from the receptive field center and nearly purely inhibitory inputs from the surround during both stationary and moving light stimulations. The direct surround inhibition was mediated mainly by reciprocal GABA(A) synapses between opposing SACs, which provided leading and prolonged inhibition during centripetal stimulus motion. Simultaneous Ca(2+) imaging and current-clamp recording during apparent-motion stimulation further demonstrated the contributions of both centrifugal excitation and GABA(A/C)-receptor-mediated centripetal inhibition to the direction-selective Ca(2+) responses in SAC distal processes. Thus, by placing GABA release sites in electrotonically semi-isolated distal processes and endowing these sites with reciprocal GABA(A) synapses, SACs use a radial-symmetric center-surround receptive field structure to build a polar-asymmetric circuitry. This circuitry may integrate at least three levels of interactions--center excitation, surround inhibition, and reciprocal inhibitions that amplify the center--surround antagonism-to generate robust direction selectivity in the distal processes.  相似文献   

11.
Calcitonin gene-related peptide-immunoreactive (CGRP-IR) nerves within guinea-pig peribronchial ganglia were studied at ultrastructural level using pre-embedding immunohistochemistry. Preterminal CGRP-IR axons were unmyelinated and contained singular immunoreactive dense core vesicles. CGRP-IR axon terminals were filled with numerous non-reactive small clear vesicles and few immunoreactive dense core vesicles. Some of these terminals were presynaptic to large neuronal processes emerging from local ganglion cells. Another population of presynaptic varicosities lack CGRP-IR. Within CGRP-IR terminals, non-reactive clear vesicles were clustered at the presynaptic membrane whereas CGRP-IR large vesicles remained in some distance from the synaptic cleft. The present observations indicate that: (1) at least two neurochemically different types of synaptic input exist to guinea-pig peribronchial ganglia. (2) CGRP-IR presynaptic terminals probably utilize a non-peptide transmitter for fast synaptic transmission, whilst the peptides are likely to be released parasynaptically and may act in a modulatory fashion.  相似文献   

12.
The reserve pool (RP) and readily releasable pool (RRP) of synaptic vesicles within presynaptic nerve terminals were physiologically differentiated into distinctly separate functional groups. This was accomplished in glutamatergic nerve terminals by blocking the glutamate transporter with dl-threo-beta-benzyloxyaspartate (TBOA; 10 microM) during electrical stimulation with either 40 Hz of 10 pulses within a train or 20- or 50-Hz continuous stimulation. The 50-Hz continuous stimulation decreased the excitatory postsynaptic potential amplitude 60 min faster than for the 20-Hz continuous stimulation in the presence of TBOA (P < 0.05). There was no significant difference between the train stimulation and 20-Hz continuous stimulation in the run-down time in the presence of TBOA. After TBOA-induced synaptic depression, the excitatory postsynaptic potentials were rapidly (<1 min) revitalized by exposure to serotonin (5-HT, 1 microM) in every preparation tested (P < 0.05). At this glutamatergic nerve terminal, 5-HT promotes an increase probability of vesicular docking and fusion. Quantal recordings made directly at nerve terminals revealed smaller quantal sizes with TBOA exposure with a marked increase in quantal size as well as a continual appearance of smaller quanta upon 5-HT treatment after TBOA-induced depression. Thus 5-HT was able to recruit vesicles from the RP that were not rapidly depleted by acute TBOA treatment and electrical stimulation. The results support the notion that the RRP is selectively activated during rapid electrical stimulation sparing the RP; however, the RP can be recruited by the neuromodulator 5-HT. This suggests at least two separate kinetic and distinct regulatory paths for vesicle recycling within the presynaptic nerve terminal.  相似文献   

13.
Seven of the photoreceptor axons of each ommatidium in the compound eye of the prawn Pandalus borealis end in two layers in the optic lamina. They have expanded terminals in the optic cartridges; four distally and three proximally in each cartridge. All seven receptor terminals are presynaptic to one lamina monopolar neuron (M2) of the cartridge. This monopolar neuron is situated centrally in the cartridge and has a thick axis fibre with radially arranged branches, and its axon has a terminal in medulla externa. At the synapses, an arrowlike presynaptic bar is found facing three postsynaptic profiles. The receptor terminals have several characteristics. Their cytoplasm is filled with empty and coated vesicles, and contains numeorus large mitochondria and clusters of tubular elements. There is a longitudinally arranged fascicle of filaments partly surrounded by electron-dense amorphous material in the terminals. Centrally towards M2, numerous neural spines invaginate into the terminal. Along the entire terminal periphery, there are invaginations from the glial cells. The terminals also form small knoblike protrusions extending into the surrounding glial cells.  相似文献   

14.
A rabbit antiserum to mediatophore, a nerve terminal membrane protein involved in calcium dependent ACh release, was raised after immunization with the purified protein. An immunological assay for mediatophore was then developed and the subcellular distribution of this protein in Torpedo electric organ fractions was studied. A good agreement was obtained between the distribution in the different fractions of the antigen and of mediatophore related acetylcholine releasing activity as determined by reconstitution in proteoliposomes. Mediatophore was highly concentrated in presynaptic plasma membranes of electric organ, while very low contents were observed in electric nerves and electric lobes. Although some mediatophore was found in synaptic vesicle fractions, this most probably resulted from presynaptic membrane contamination as evaluated with other presynaptic membrane markers. Nerve terminals of motor end-plates were strongly stained with anti-mediatophore antibodies.  相似文献   

15.
Depolarization-transmitter release coupling was studied in the promotor stretch receptor/motoneuron synapse of the crab. Callinectes sapidus, a preparation in which presynaptic action potentials do not occur. Intracellular microelectrode recordings were made from the presynaptic terminal and from the somata of postsynaptic motoneurons while injecting current pulses into the peripheral stretch receptor dendrite with the aid of the sucrose-gap. 1. For short current pulses, the relationship between presynaptic potential and postsynaptic response was found to be similar to that demonstrated in the giant synapse of the squid stellate ganglion, indicating a common reliance on the properties of voltage-dependent calcium channels. 2. The crab synapse was found to be capable of continuous transmission in the range of seconds and minutes without the pronounced depletion of transmitter seen in the squid, and without inactivation of the release process (i.e., the calcium conductance is non-inactivating). 3. A graded, transient response to depolarising current in the presynaptic fibre was found to be calcium-dependent, and probably to reflect the presence of a separate, inactivating calcium conductance. 4. It was concluded that the graded response of the presynaptic membrane could function in helping to compensate for capacitative distortion of receptor potentials decrementally conducted in the sensory dendrite, and was therefore a specialisation for non-impulsive transmission.  相似文献   

16.
The ultrastructure of layer I in the middle ectosylvian gyrus (area 22) of the cat's cerebral cortex was investigated. Beneath the subpial astrocytic layer most of the neuropil in layer I was shown to be occupied by nerve fibers and their terminals, terminal branches, dendritic spines, and astrocytic processes surrounding them. More than 90% of the presynaptic terminals contained spherical synaptic vesicles. The predominant types of interneuronal junctions are axo-spinous and axo-dendritic synapses of asymmetrical type. Presynaptic terminals, which contain flattened and pleomorphic synaptic vesicles, take part in the formation of all symmetrical junctions, accounting for 6% of the total number of synapses. Large polymorphic outgrowths filled with vacuoles — so-called multivacuolar sacs — are described. These structures were invaginated into varicose expansion of the terminal branches of apical dendrites of pyramidal neurons. They are shown to be outgrowths of presynaptic terminals. Dependence of synaptic function on the shape of the synaptic vesicles is examined.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 15, No. 1, pp. 50–55, January–February, 1983.  相似文献   

17.
The synapses in the stratum lacunosum-molecular (str. L-M) of CA1 hippocampal field in 3-month old and 24-month old rats were examined using quantitative ultrastructural methods. No significant difference in the density of synapses and postsynaptic dendritic spines was found between the two age groups. The area of presynaptic terminals and postsynaptic dendritic spines was decreased slightly but significantly in the group of aged as compared to that in the group of young-mature rats. The vesicle number per presynaptic terminal, per area of presynaptic terminals and per volume of neuropil was not changed while the vesicle number per area of synaptic contact zones (SCZ) was increased in the group of aged rats. The mean length, total length and total surface of SCZ were diminished in the group of aged as compared to those in the group of young-mature rats. The same width of the str.radiatum and str.L-M in the two age groups showed that there was no any shrinkage of the neuropil in aged rats. The quantitative alterations in the synapses were accompanied by an increased number of dense and lamellar bodies in presynaptic terminals as well as with a presence of hypertrophic astroglial processes.  相似文献   

18.
Kuromi  Hiroshi  Kidokoro  Yoshi 《Brain Cell Biology》2003,32(5-8):551-565
Drosophila neuromuscular junctions (DNMJs) are malleable and its synaptic strength changes with activities. Mobilization and recruitment of synaptic vesicles (SVs), and replenishment of SV pools in the presynaptic terminal are involved in control of synaptic efficacy. We have studied dynamics of SVs using a fluorescent styryl dye, FM1-43, which is loaded into SVs during endocytosis and released during exocytosis, and identified two SV pools. The exo/endo cycling pool (ECP) is loaded with FM1-43 during low frequency nerve stimulation and releases FM1-43 during exocytosis induced by high K+. The ECP locates close to release sites in the periphery of presynaptic boutons. The reserve pool (RP) is loaded and unloaded only during high frequency stimulation and resides primarily in the center of boutons. The size of ECP closely correlates with the efficacy of synaptic transmission during low frequency neuronal firing. An increase of cAMP facilitates SV movement from RP to ECP. Post-tetanic potentiation (PTP) correlates well with recruitment of SVs from RP. Neither PTP nor post-tetanic recruitment of SVs from RP occurs in memory mutants that have defects in the cAMP/PKA cascade. Cyotochalasin D slows mobilization of SVs from RP, suggesting involvement of actin filaments in SV movement. During repetitive nerve stimulation the ECP is replenished, while RP replenishment occurs after tetanic stimulation in the absence of external Ca2+. Mobilization of internal Ca2+ stores underlies RP replenishment. SV dynamics is involved in synaptic plasticity and DNMJs are suitable for further studies.  相似文献   

19.
The calyx-type synapse of chick ciliary ganglion (CG) has been intensively studied for decades as a model system for the synaptic development, morphology and physiology. Despite recent advances in optogenetics probing and/or manipulation of the elementary steps of the transmitter release such as membrane depolarization and Ca2+ elevation, the current gene-manipulating methods are not suitable for targeting specifically the calyx-type presynaptic terminals. Here, we evaluated a method for manipulating the molecular and functional organization of the presynaptic terminals of this model synapse. We transfected progenitors of the Edinger-Westphal (EW) nucleus neurons with an EGFP expression vector by in ovo electroporation at embryonic day 2 (E2) and examined the CG at E8–14. We found that dozens of the calyx-type presynaptic terminals and axons were selectively labeled with EGFP fluorescence. When a Brainbow construct containing the membrane-tethered fluorescent proteins m-CFP, m-YFP and m-RFP, was introduced together with a Cre expression construct, the color coding of each presynaptic axon facilitated discrimination among inter-tangled projections, particularly during the developmental re-organization period of synaptic connections. With the simultaneous expression of one of the chimeric variants of channelrhodopsins, channelrhodopsin-fast receiver (ChRFR), and R-GECO1, a red-shifted fluorescent Ca2+-sensor, the Ca2+ elevation was optically measured under direct photostimulation of the presynaptic terminal. Although this optically evoked Ca2+ elevation was mostly dependent on the action potential, a significant component remained even in the absence of extracellular Ca2+. It is suggested that the photo-activation of ChRFR facilitated the release of Ca2+ from intracellular Ca2+ stores directly or indirectly. The above system, by facilitating the molecular study of the calyx-type presynaptic terminal, would provide an experimental platform for unveiling the molecular mechanisms underlying the morphology, physiology and development of synapses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号