首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impairment in nerve growth factor (NGF)-mediated support to basal forebrain cholinergic neurons may represent an initial insult to certain neural cells in Alzheimer's disease (AD). High affinity NGF receptor (TrkA) levels are decreased in AD brains as compared to age-matched control brains. One of the approaches suggested for the treatment of AD exploits the ability of small molecular substances to enhance the expression of endogenous growth factors and/or their receptors. The purpose of this study was to determine whether treatment with nicotine in both in vitro and in vivo settings would increase the neural expression of TrkA receptors. Using a differentiated PC12 neuronal-like system, chronic nicotine treatment increased cell surface TrkA receptor expression. Nicotine's action was blocked by co-treatment with either the non-competitive nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine or with the alpha7 nAChR-selective antagonist methyllycaconitine. Surprisingly, certain low doses of mecamylamine alone also increased TrkA receptor levels. Rats prepared with chronic indwelling intravenous catheters were continuously infused with nicotine to deliver a total dose of 12 mg/kg over 24 hr. This treatment resulted in a significant 44% increase in TrkA receptor expression in the hippocampus. As in the cell experiments, mecamylamine also increased hippocampal TrkA receptor expression. In fact, the ratio of the maximal mecamylamine response to the maximal nicotine response that was measured in vitro, i.e., 0.43 was remarkably similar to that for the in vivo experiment, i.e., 0.47. Since in our previous studies the increase in TrkA expression produced by nicotine was shown to be related to its cytoprotective actions, these results suggest that nicotine's neuroprotective actions might also be mediated through the drug's interaction with central alpha7 nAChRs and subsequent increase in TrkA receptor expression.  相似文献   

2.
To study molecular mechanisms underlying neuronal cell death, we have used sympathetic neurons from superior cervical ganglia which undergo programmed cell death when deprived of nerve growth factor. These neurons have been microinjected with expression vectors containing cDNAs encoding selected proteins to test their regulatory influence over cell death. Using this procedure, we have shown previously that sympathetic neurons can be protected from NGF deprivation by the protooncogene Bcl-2. We now report that the E1B19K protein from adenovirus and the p35 protein from baculovirus also rescue neurons. Other adenoviral proteins, E1A and E1B55K, have no effect on neuronal survival. E1B55K, known to block apoptosis mediated by p53 in proliferative cells, failed to rescue sympathetic neurons suggesting that p53 is not involved in neuronal death induced by NGF deprivation. E1B19K and p35 were also coinjected with Bcl-Xs which blocks Bcl-2 function in lymphoid cells. Although Bcl-Xs blocked the ability of Bcl- 2 to rescue neurons, it had no effect on survival that was dependent upon expression of E1B19K or p35.  相似文献   

3.
4.
Ceramide manifests both neurotoxic and neuroprotective properties depending on the experimental system. Ito and Horigome previously reported that ceramide delays apoptosis in a classic model of developmental programmed cell death, i.e. sympathetic neurons undergoing NGF deprivation.1 Here, we investigated the actions of ceramide upon the biochemical and genetic changes that occur in NGF deprived neurons. We correlate ceramide's neuroprotective actions with the ability of ceramide to antagonize NGF deprivation-induced oxidative stress and c-jun induction, both of which contribute to apoptosis in this model. However, ceramide did not block NGF deprivation-induced declines in RNA and protein synthesis, suggesting that ceramide does not slow all apoptosis-related events. Overall, these results are significant in that they show that ceramide acts early in the death cascade to antagonize two events necessary for NGF-deprivation induced neuronal apoptosis. Moreover, these results dissociate declines in neuronal function, i.e. macromolecular synthesis, from the neuronal death cascade.  相似文献   

5.
Recently, we have shown that high frequency electrical field stimulation (HFES) of sympathetic neurons (SN) induces nerve sprouting by up-regulation of nerve growth factor (NGF) which targets the tyrosine kinase A receptor (TrkA) in an autocrine/paracrine manner. There is increasing evidence that matrix metalloproteinase-2 (MMP-2) is not only involved in extracellular matrix (ECM) turnover but may also exert beneficial effects during neuronal growth. Therefore, this study aimed to investigate the regulation and function of MMP-2 and its major activator membrane type 1-matrix metalloproteinase (MT1-MMP) as well its inhibitor TIMP-1 in SN under conditions of HFES. Moreover, we analyzed molecular mechanisms of the beneficial effect of losartan, an angiotensin II type I receptor (AT-1)blocker on HFES-induced nerve sprouting. Cell cultures of SN from the superior cervical ganglia (SCG) of neonatal rats were electrically stimulated for 48 h with a frequency of 5 or 50 Hz. HFES increased MMP-2 and MT1-MMP mRNA and protein expression, whereas TIMP-1 expression remained unchanged. Under conditions of HFES, we observed a shift from pro- to active-MMP-2 indicating an increase in MMP-2 enzyme activity. Specific pharmacological MMP-2 inhibition contributed to an increase in pro-NGF amount in the cell culture supernatant and significantly reduced HFES-induced neurite outgrowth. Losartan abolished HFES-induced nerve sprouting in a significant manner by preventing HFES-induced NGF, MMP-2, and MT1-MMP up-regulation. In summary, specific MMP-2 blockade prevents sympathetic nerve sprouting (SNS) by inhibition of pro-NGF conversion while losartan abolishes HFES-induced SNS by reducing total NGF, MMP-2 and MT1-MMP expression.  相似文献   

6.
Nerve Growth Factor (NGF) is a neurotrophic factor that prevents apoptosis in neuronal progenitor cells. In rat pheochromocytoma (PC12) cells, tyrosine kinase A receptor (TrkA) mediates neurotrophic or protective effects, while p75 neurotrophin receptor (p75NTR) functions as a death receptor. We have determined whether TrkA mediates any cytotoxic effect. Following serum deprivation, TrkA expression increased 2.2-fold and apoptosis began with expression of Bax proapoptotic protein. Application of NGF halved cell viability but this was reversed by K252a, the TrkA inhibitor. These results confirmed the paradoxical cytotoxic effect of neurotrophic NGF via TrkA in PC12 cells following serum deprivation.  相似文献   

7.
8.
The current paradigm for the role of nerve growth factor (NGF) or FGF-2 in the differentiation of neuronal cells implies their binding to specific receptors and activation of kinase cascades leading to the expression of differentiation specific genes. We examined herein the hypothesis that FGF receptors (FGFRs) are involved in NGF-induced neuritogenesis of pheochromocytoma-derived PC12 cells. We demonstrate that in PC12 cells, FGFR expression and activity are modulated upon NGF treatment and that a dominant negative FGFR-2 reduces NGF-induced neuritogenesis. Moreover, FGF-2 expression is modulated by NGF, and FGF-2 is detected at the cell surface. Oligonucleotides that specifically inhibit FGF-2 binding to its receptors are able to significantly reduce NGF-induced neurite outgrowth. Finally, the duration of mitogen-activated protein kinase (MAPK) activity upon FGF or NGF stimulation is shortened in FGFR-2 dominant negative cells through inactivation of signaling from the receptor to the Ras/MAPK pathway. In conclusion, these results demonstrate that FGFR activation is involved in neuritogenesis induced by NGF where it contributes to a sustained MAPK activity in response to NGF.  相似文献   

9.
Multiple Levels for Regulation of TrkA in PC12 Cells by Nerve Growth Factor   总被引:4,自引:0,他引:4  
Abstract: TrkA is a receptor tyrosine kinase for nerve growth factor (NGF). Recent studies indicate that NGF regulates not only activation of trkA kinase but also expression of the trkA gene. To further define NGF actions on trkA, we examined binding and signaling through trkA after both short and long intervals of NGF treatment. Induction of tyrosine phosphorylation on gp140 trkA was rapidly followed by down-regulation of cell surface and total cellular gp140 trkA . At later intervals, increased expression of trkA was evident in increased mRNA and protein levels. At 7 days, there was increased binding to gp140 trkA and increased signaling through this receptor. NGF appears to regulate trkA at several levels. In neurons persistently exposed to NGF, maintenance of NGF signaling may require increased trkA gene expression.  相似文献   

10.
Nerve growth factor (NGF) is a protein which promotes the survival and differentiation of neuronal cells in vitro and plays an important role in neuronal development. In this study, we have examined the expression of the receptor for NGF (NGFR) in human neuronal and nonneuronal cells, both in tissue culture and in vivo. In addition to cell lines derived from neuroblastoma, astrocytoma, and melanoma, all of which share a common neuroectodermal origin, NGFR was detected in a number of cultured cells of mesenchymal, epithelial, and hematopoietic derivation. Immunohistochemical analysis showed that NGFR is expressed in several nonneural human tissues, and the cell types in which NGFR was found include derivatives from all three germ layers. Thus, our findings demonstrate that NGFR is much more widely expressed in human cells and tissues than was previously thought.  相似文献   

11.
The nerve growth factor (NGF) receptor is an integral membrane protein that is phosphorylated and heavily glycosylated. Determination of the amino acid sequence by molecular cloning indicates that the receptor is a cysteine-rich protein which contains a signal peptide sequence and spans the lipid bilayer with a single transmembrane sequence. A single mRNA of 3.8 kilobases was observed for the receptor, of which 1.5 kilobases is coding sequence. We have used microinjection of receptor RNA in Xenopus laevis oocytes to obtain cell surface expression of the receptor. The presence of NGF receptors in oocytes was verified by radioimmunoassay, specific binding of [125I]NGF, and metabolic labeling followed by immunoprecipitation. The NGF receptor protein was rapidly processed in oocytes and displayed extensive glycosylation. Furthermore, the presence of NGF receptors in oocytes potentiates the ability of progesterone to induce maturation.  相似文献   

12.
The nerve growth factor (NGF) receptor is a glycosylated transmembrane protein present on the cell surface as both high and low affinity forms, but biological responsiveness requires interactions of NGF with the high affinity site. We have tested the effects of mutations in the intracellular domain of the receptor upon its cell surface expression and equilibrium binding of 125I-NGF. Although mutant receptors lacking the entire cytoplasmic domain are processed and expressed at the cell surface and are capable of binding to NGF, the absence of cytoplasmic sequences leads to a loss of high affinity binding and to a lack of an appropriate cross-linking pattern as assessed by N-hydroxysuccinimidyl 4-azidobenzoate photoaffinity cross-linking. These results, taken together with the highly conserved nature of these cytoplasmic sequences, implies that the interaction of the receptor with an accessory molecule is necessary to form the high affinity receptor.  相似文献   

13.
The G protein-coupled delta opioid receptor gene (dor) has been associated with neuronal survival, differentiation, and neuroprotection. Our previous study identified PI3K/Akt/NF-κB signaling is a main downstream signaling pathway in nerve growth factor (NGF)-induced temporal expression of the dor gene in the PC12 cell model. It is still unknown how NGF/PI3K signaling regulates the expression of the dor gene in the nucleus. In the current study, we investigated how PI3K signaling affected epigenetic modifications of histone H3 Lys9 (H3K9) in the 5′-UTR region of the rat dor gene locus. NGF treatment resulted in the global reversal of H3K9 trimethylation in cells. Moreover, the locus-specific reversal of H3K9 trimethylation and acetylation of H3K9 were dependent upon NGF/PI3K signaling and temporally well correlated with NGF-induced gene expression. These results indicate the importance of epigenetic modifications of H3K9, particularly the reversal of trimethylated H3K9, in the regulation of NGF/PI3K-dependent genes during neuronal differentiation.  相似文献   

14.
Sympathetic neurons comprise a population of postmitotic, tyrosine hydroxylase expressing cells whose survival is dependent upon nerve growth factor (NGF) both in vivo and in vitro. However, during development precursors to rat sympathetic neurons in the thoracolumbar region are not responsive to NGF because they lack the signal transducing NGF receptor, trkA. We have previously shown that acquisition of trkA expression is sufficient to confer a functional response to NGF. Here we describe four subpopulations of thoracolumbar sympathetic neuroblasts which are mitotically active and unresponsive to NGF at E13.5 of rat gestation, but differ based upon their neurotrophic responsiveness in vitro. The survival in culture of the largest sympathetic subpopulation is mediated by neurotrophin-3 (NT-3) or glial-derived neurotrophic factor (GDNF), whereas the cell survival of two smaller subpopulations of neuroblasts are mediated by either solely GDNF or solely NT-3. Finally, we identify a subpopulation of sympathetic neuroblasts in the thoracolumbar region whose survival, exit from the cell cycle, induction of trkA expression, and consequent acquisition of NGF responsiveness in culture appear to be neurotrophin independent and cell autonomous. These subpopulations reflect the diversity of neurotrophic actions that occur in the proper development of sympathetic neurons.  相似文献   

15.
16.
We previously demonstrated that the immature rat ovary synthesizes nerve growth factor (NGF), and that interference of NGF actions by immunoneutralization during neonatal life prevents development of the ovarian sympathetic innervation and delays follicular maturation. Since the actions of NGF are exerted via binding to specific cell surface receptors, the present study was undertaken to define and characterize the presence of NGF receptors (NGFrec) in the developing rat ovary. NGF interacts with two classes of NGFrec. The most abundant is a low affinity form expressed in the central nervous system and peripheral tissues. This receptor is encoded by a single 3.8-kilobase mRNA species. Cross-linking of [125I]NGF to ovarian membranes followed by immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography showed the presence of a approximately 90-kilodalton molecular species which corresponds in size to the predominant NGF receptor species cross-linked to its ligand. While ovarian NGFrec may be of neuronal origin and reach the gland exclusively by anterograde axonal transport, RNA blot hybridization demonstrated that the ovary expresses the NGFrec mRNA species that encodes the low affinity NGF receptor and, thus, implicated the ovary itself as a site of NGFrec synthesis. NGFrec mRNA levels decreased abruptly after the first ovulation, suggesting that NGFrec may be synthesized in growing follicles and that this capacity is lost after follicular rupture and luteinization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have studied the role of protein tyrosine phosphatases (PTPases) during neuronal differentiation of PC12 cells. Nerve growth factor (NGF), a well-characterized differentiating agent for these cells, led to a decrease in DNA synthesis within 24 h. This was accompanied by a 2- to 3-fold increase in the activity of PTPases, measured as the dephosphorylation of polyacidic or polybasic substrates phosphorylated on tyrosine. PTPase activation was independent of cell density and proportional to NGF concentration, with a half-maximal effect occurring at 0.35 nM. High-performance liquid chromatography size exclusion chromatography revealed that PTPases with molecular masses of 550, 300, and 60 kilodaltons were activated in response to NGF. Additional studies showed that the presence of NGF made PC12 cells refractory to the mitogenic effect of epidermal growth factor. Our data indicate that NGF-induced neuronal differentiation and growth arrest in PC12 cells are associated with activation of several PTPases. We speculate that PTPase activation in response to NGF may inhibit the mitogenic actions of other growth factors.  相似文献   

18.
Recent work has shown that estrogen receptor mRNA and protein co-localize with neurotrophin receptor systems in the developing basal forebrain. In the present study we examined the potential for reciprocal regulation of estrogen and neurotrophin receptor systems by their ligands in a prototypical neurotrophin target, the PC12 cell. using in situ hybridization histochemistry, RT-PCR and a modified nuclear exchange assay, we found both estrogen receptor mRNA and estrogen binding in PC12 cells. Moreover, while estrogen binding was relatively low in naive PC12 cells, long-term exposure to NGF enhanced estrogen binding in these cells by sixfold. Furthermore, concurrent exposure to estrogen and NGF receptor mRNAs deifferentially regulated the expression of the two NGF receptor mRNAs. The expression of trkA mRNA was up-regulated, while p75NGFR mRNA was down-regulated transiently. The present data indicate that NGF may increase neuronal sensitivity to estrogen, and that estrogen, by differentially regulating p75NGFR and trkA mRNA, may alter the ratio fo the two NGF receptors, and, conseuqnetly, neurotrophin responsivity. In view of the widespread co-localization of estrogen and neurotrophin receptor systems in the developing CNS, the reciprocal regulation of these receptor systems by NGF and estrogen may have important implications for processes governing neural maturation and the maintenance of neural funciton. 1994 John Wiley & Sons, Inc.  相似文献   

19.
We have investigated the effect of nerve growth factor (NGF) in the androgen-dependent, prostate adenocarcinoma LNCaP cell line. Exposure of LNCaP cells to NGF resulted in a significant increase of cell proliferation. The effect was concentration dependent and equally present in serum- or charcoal-stripped serum-supplemented and serum-deprived conditions. The mitogenic action of NGF was accompanied by an enhanced expression of prostate-specific antigen (PSA) and resulted additive to the proliferative effect of dihydrotestosterone. The proliferative effect of NGF appeared to be mediated by the high-affinity NGF receptor, p140trka. Only p140trka, but not the low-affinity NGF receptor, p75LNGFR, was expressed in LNCaP cells; both the proliferative response and the phosphorylation of p140trka upon NGF treatment were prevented by the tyrosine kinase inhibitor K252a. LNCaP cells transiently transfected with the cDNA encoding for p75LNGFR appeared more sensitive to NGF, as demonstrated by the increased number of p75LNGFR-transfected LNCaP cells exposed for 72 h to NGF compared with wild LNCaP cultures. However, p75LNGFR-transfected LNCaP cells rapidly underwent apoptotic death when deprived of NGF. Our study demonstrates the physiological relevance of NGF in the regulation of prostate cell proliferation and the relative contribution of the high- and low-affinity NGF receptors in this control.  相似文献   

20.
The nerve growth factor (NGF)-tyrosine kinase receptor TrkA plays a critical role in various neuronal and non-neuronal cell types by regulating cell survival, differentiation, and proliferation. In breast cancer cells, TrkA stimulation results in the activation of cellular growth, but downstream signaling largely remains to be described. Here we used a proteomics-based approach to identify partners involved in TrkA signaling in breast cancer cells. Wild type and modified TrkA chimeric constructs with green fluorescent protein were transfected in MCF-7 cells, and co-immunoprecipitated proteins were separated by SDS-PAGE before nano-LC-MS/MS analysis. Several TrkA putative signaling partners were identified among which was the DNA repair protein Ku70, which is increasingly reported for its role in cell survival and carcinogenesis. Physiological interaction of Ku70 with endogenous TrkA was induced upon NGF stimulation in non-transfected cells, and co-localization was observed with confocal microscopy. Mass spectrometry analysis and Western blotting of phosphotyrosine immunoprecipitates demonstrated the induction of Ku70 tyrosine phosphorylation upon NGF stimulation. Interestingly no interaction between TrkA and Ku70 was detected in PC12 cells in the absence or presence of NGF, suggesting that it is not involved in the initiation of neuronal differentiation. In breast cancer cells, RNA interference indicated that whereas Ku70 depletion had no direct effect on cell survival, it induced a strong potentiation of apoptosis in TrkA-overexpressing cells. In conclusion, TrkA signaling appears to be proapoptotic in the absence of Ku70, and this protein might therefore play a role in the long time reported ambivalence of tyrosine kinase receptors that can exhibit both anti- and eventually proapoptotic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号