首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F C Fraser 《Teratology》1976,14(3):267-280
The common congenital malformations have familial distributions that cannot be accounted for by simple Mendelian models, but can be explained in terms of a continuous variable, "liability," with a threshold value beyond which individuals will be affected. Both genetic and environmental factors determine liability, making the system multifactorial. Cleft palate is a useful experimental model, illustrating a number of factors that contribute to palate closure, the nature of a developmental threshold, and how genes and teratogens can alter the components of liability to increase the probability of cleft palate. The nature of the genetic component to liability in human malformations in not clear, and various possibilities, ranging from polygenic in the strict sense to a major gene with reduced penetrance are compatible with the data -- but the important feature is the threshold. Much of the confusion over the concept results from inconsistent use of terminology. The term "multifactorial" should be used for "determined by a combination of genetic and environmental factors," without reference to the nature of the genetic factor(s). "Polygenic" should be reserved for "a large number of genes, each with a small effect, acting additively." When several genes, with more major effects are involved, "multilocal" can be used. When it is not clear which of these is applicable the term "plurilocal" is suggested, in the sense of "genetic variation more complex than a simple Mendelian difference." Since teratological data often represent threshold characters the concept also has important implications for the interpretation of data on dose-response curves, synergisms, and strain differences in response to teratogens.  相似文献   

2.
A fundamental goal of evolutionary ecology is to identify the sources underlying trait variation on which selection can act. Phenotypic variation will be determined by both genetic and environmental factors, and adaptive phenotypic plasticity is expected when organisms can adjust their phenotypes to match environmental cues. Much recent research interest has focused on the relative importance of environmental and genetic factors on the expression of behavioral traits, in particular, and how they compare with morphological and life‐history traits. Little research to date examines the effect of development on the expression of heritable variation in behavioral traits, such as boldness and activity. We tested for genotype, environment, and genotype‐by‐environment differences in body mass, development time, boldness, and activity, using developmental density treatments combined with a quantitative genetic design in the sand field cricket (Gryllus firmus). Similar to results from previous work, animals reared at high densities were generally smaller and took longer to mature, and body mass and development time were moderately heritable. In contrast, neither boldness nor activity responded to density treatments, and they were not heritable. The only trait that showed significant genotype‐by‐environment differences was development time. It is possible that adaptive behavioral plasticity is not evident in this species because of the highly variable social environments it naturally experiences. Our results illustrate the importance of validating the assumption that behavioral phenotype reflects genetic patterns and suggest questions about the role of environmental instability in trait variation and heritability.  相似文献   

3.
The agronomic performance of fruit trees is significantly influenced by tree internal organization. Introducing architectural traits in breeding programs could thus lead to select new varieties with a regular bearing and lower input demand in order to reduce training and environmental costs. However, an interaction between tree ontogeny and genetic factors is expected. In this study, we investigated the genetic determinism of architectural traits in the olive tree, accounting for tree development over 5 years until first flowering occurrence. We studied an F1 progeny issued from a cross between two contrasted genotypes, ‘Olivière’ and ‘Arbequina’. Tree architecture was decomposed in quantitative traits, related to (1) growth and branching, (2) first flowering and fruiting. Models, including the year of growth, branching order and genotype effects, were built with variance function and covariance structure when necessary. After a model selection, broad sense heritabilities were calculated. During the first 3 years, both the mean values of vegetative traits and genetic factor significance depended on the shoot within-tree position. Dependencies between consecutive years were revealed for traits related to whole tree form. Whole tree form variables showed medium to high broad sense heritability values, whereas reproductive traits were highly heritable. This study demonstrates the existence of ontogenic trends in the olive tree, which result in traits heritable only at the tree periphery. A phenotyping strategy adapted to its architectural characteristics and a list of relevant traits, such as maximal internode length, is proposed. Transgressive effects suggest that genetic progress could be performed in future selection programs.  相似文献   

4.
We examined heritable variation for quantitative traits within and between naturally occurring mesic and xeric ecotypes of the slender wild oat (Avena barbata), and in 188 recombinant inbred lines derived from a cross between the ecotypes. We measured a suite of seedling and adult traits in the greenhouse, as well as performance-related traits in field sites native to the two ecotypes. Although the ecotypes were genetically diverged for most traits, few traits showed significant heritable variation within either ecotype. In contrast, considerable heritable variation was released in the recombinant progeny of the cross, and transgressive segregation was apparent in all traits. Heritabilities were substantially greater in the greenhouse than in the field, and this was associated with an increase in environmental variance in the field, rather than a decrease in genetic variance. Strong genetic correlations were evident among the recombinants, such that 22 measured traits could be well represented by only seven underlying factors, which accounted for 80% of the total variation. The primary axis of variation in the greenhouse described a trade-off between vegetative and reproductive allocation, mediated by the date of first flowering, and fitness was strongly correlated with this trade-off. Other factors in the greenhouse described variation in size and in seedling traits. Lack of correlation among these factors represents the release of multivariate trait variation through recombination. In the field, a separate axis of variation in overall performance was found for each year/site combination. Performance was significantly correlated across field environments, but not significantly correlated between greenhouse and field.  相似文献   

5.
In vertebrates, darker individuals are often found to be more active and willing to take risks (representing characteristics of a ‘proactive’ coping style), whereas lighter individuals are instead more cautious and less active (representing characteristics of a ‘reactive’ coping style). It is thus generally expected that melanin‐based coloration and proactivity form a suite of positively integrated traits at the among‐individual level. Here, we use a multigenerational pedigree of free‐living great tits (Parus major) to partition variation in, and the correlation between, melanin‐based breast stripe (‘tie’) size and exploration behaviour (a proxy for coping style) into its among‐ and within‐individual components. We show that both traits harbour heritable variation. Against predictions, tie size and speed of exploration were negatively correlated at the among‐individual level due to the combined influences of permanent environmental and additive genetic effects. By contrast, the two traits were weakly positively correlated within individuals (i.e. individuals increasing in tie size after moult tended to become more explorative). The patterns of among‐individual covariance were not caused by correlational selection as we found additive and opposite selection pressures acting on the two traits. These findings imply that testing hypotheses regarding the existence of a ‘syndrome’ at the among‐individual level strictly requires variance partitioning to avoid inappropriate interpretations as the negative ‘unpartitioned’ phenotypic correlation between exploration and tie size resulted from counteracting effects of within‐ and among‐individual correlations. Identifying sources and levels of (co)variation in phenotypic traits is thus critical to our understanding of biological patterns and evolutionary processes.  相似文献   

6.
Most characters that distinguish one individual from another, like height or weight, vary continuously in populations. Continuous variation of these ‘quantitative’ traits is due to the simultaneous segregation of multiple quantitative trait loci (QTLs) as well as environmental influences. A major challenge in human medicine, animal and plant breeding and evolutionary genetics is to identify QTLs and determine their genetic properties. Studies of the classic quantitative traits, abdominal and sternopleural bristle numbers of Drosophila, have shown that: (1) many loci have small effects on bristle number, but a few have large effects and cause most of the genetic variation; (2) ‘candidate’ loci involved in bristle development often have large quantitative effects on bristle number; and (3) alleles at QTLs affecting bristle number have variable degrees of dominance, interact with each other, and affect other quantitative traits, including fitness. Lessons learned from this model system will be applicable to studies of the genetic basis of quantitative variation in other species.  相似文献   

7.
Theory predicts that natural selection will erode additive genetic variation in fitness-related traits. However, numerous studies have found considerable heritable variation in traits related to immune function, which should be closely linked to fitness. This could be due to trade-offs maintaining variation in these traits. We used the Egyptian cotton leafworm, Spodoptera littoralis, as a model system to examine the quantitative genetics of insect immune function. We estimated the heritabilities of several different measures of innate immunity and the genetic correlations between these immune traits and a number of life history traits. Our results provide the first evidence for a potential genetic trade-off within the insect immune system, with antibacterial activity (lysozyme-like) exhibiting a significant negative genetic correlation with haemocyte density, which itself is positively genetically correlated with both haemolymph phenoloxidase activity and cuticular melanization. We speculate on a potential trade-off between defence against parasites and predators, mediated by larval colour, and its role in maintaining genetic variation in traits under natural selection.  相似文献   

8.
The heritability of quantitative traits, or the proportion of phenotypic variation due to additive genetic or heritable effects, plays an important role in determining the evolutionary response to natural selection. Most quantitative genetic studies are performed in the laboratory, due to difficulty in obtaining genealogical data in natural populations. Genealogies are known, however, from a unique 20-year study of toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka. Heritability in this natural population was, therefore, estimated. Twenty-seven body measurements representing the lengths and widths of the head, trunk, extremities, and tail were collected from 270 individuals. The sample included 172 offspring-mother pairs from 39 different matrilineal families. Heritabilities were estimated using traditional mother-offspring regression and maximum likelihood methods which utilize all genealogical relationships in the sample. On the common assumption that environmental (including social) factors affecting morphology were randomly distributed across families, all but two of the traits (25 of 27) were significantly heritable, with an average heritability of 0.51 for the mother-offspring analysis and 0.56 for the maximum likelihood analysis. Heritability estimates obtained from the two analyses were very similar. We conclude that the Polonnaruwa macaques exhibit a comparatively moderate to high level of heritability for body form. © 1992 Wiley-Liss, Inc.  相似文献   

9.
Aggressive behaviours are necessarily expressed in a social context, such that individuals may be influenced by the phenotypes, and potentially the genotypes, of their social partners. Consequently, it has been hypothesized that indirect genetic effects (IGEs) arising from the social environment will provide a major source of heritable variation on which selection can act. However, there has been little empirical scrutiny of this to date. Here we test this hypothesis in an experimental population of deer mice (Peromyscus maniculatus). Using quantitative genetic models of five aggression traits, we find repeatable and heritable differences in agonistic behaviours of focal individuals when presented with an opponent mouse. For three of the traits, there is also support for the presence of IGEs, and estimated correlations between direct and indirect genetic (rAO,F) effects were high. As a consequence, any selection for aggression in the focal individuals should cause evolution of the social environment as a correlated response. In two traits, strong positive rAO,F will cause the rapid evolution of aggression, while in a third case changes in the phenotypic mean will be constrained by negative covariance between direct and IGEs. Our results illustrate how classical analyses may miss important components of heritable variation, and show that a full understanding of evolutionary dynamics requires explicit consideration of the genetic component of the social environment.  相似文献   

10.
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species.  相似文献   

11.
Within-population variation in the traits underpinning reproductive output has long been of central interest to biologists. Since they are strongly linked to lifetime reproductive success, these traits are expected to be subject to strong selection and, if heritable, to evolve. Despite the formation of durable pair bonds in many animal taxa, reproductive traits are often regarded as female-specific, and estimates of quantitative genetic variation seldom consider a potential role for heritable male effects. Yet reliable estimates of such social genetic effects are important since they influence the amount of heritable variation available to selection. Based on a 52-year study of a nestbox-breeding great tit (Parus major) population, we apply “extended” bivariate animal models in which the heritable effects of both sexes are modeled to assess the extent to which males contribute to heritable variation in seasonal reproductive timing (egg laying date) and clutch size, while accommodating the covariance between the two traits. Our analyses show that reproductive timing is a jointly expressed trait in this species, with (positively covarying) heritable variation for laydate being expressed in both members of a breeding pair, such that the total heritable variance is 50% larger than estimated by traditional models. This result was robust to explicit consideration of a potential male-biased environmental confound arising through sexually dimorphic dispersal. In contrast to laydate, males’ contribution to heritable variation in clutch size was limited. Our study thus highlights the contrasting extent of social determination for two major components of annual reproductive success, and emphasizes the need to consider the social context of what are often considered individual-level traits.  相似文献   

12.
13.
A basic assumption of the Darwinian theory of evolution is that heritable variation arises randomly. In this context, randomness means that mutations arise irrespective of the current adaptive needs imposed by the environment. It is broadly accepted, however, that phenotypic variation is not uniformly distributed among phenotypic traits, some traits tend to covary, while others vary independently, and again others barely vary at all. Furthermore, it is well established that patterns of trait variation differ among species. Specifically, traits that serve different functions tend to be less correlated, as for instance forelimbs and hind limbs in bats and humans, compared with the limbs of quadrupedal mammals. Recently, a novel class of genetic elements has been identified in mouse gene-mapping studies that modify correlations among quantitative traits. These loci are called relationship loci, or relationship Quantitative Trait Loci (rQTL), and affect trait correlations by changing the expression of the existing genetic variation through gene interaction. Here, we present a population genetic model of how natural selection acts on rQTL. Contrary to the usual neo-Darwinian theory, in this model, new heritable phenotypic variation is produced along the selected dimension in response to directional selection. The results predict that selection on rQTL leads to higher correlations among traits that are simultaneously under directional selection. On the other hand, traits that are not simultaneously under directional selection are predicted to evolve lower correlations. These results and the previously demonstrated existence of rQTL variation, show a mechanism by which natural selection can directly enhance the evolvability of complex organisms along lines of adaptive change.  相似文献   

14.
Many traits are phenotypically dimorphic but determined by the action of many loci, the phenotype being a result of a threshold of sensitivity. Quantitative genetic analysis has shown that generally there is considerable additive genetic variation for the trait, the average heritability being 0.52. In numerous cases threshold traits have been shown, or are assumed, to be under frequency-dependent selection; examples include satellite-territorial behaviour, sex-determination, wing dimorphism and trophic dimorphism. In this paper I investigate the potential for frequency-dependent selection to maintain both phenotypic and additive genetic variation in threshold traits. The qualitative results are robust to the particular form of the frequency-dependent selection function. The equilibrium proportion is more or less independent of population size but the heritability increases with population size, typically approaching its maximal value at a population size of 5000, when the mutation rate is 10?4. A tenfold decrease in the mutation rate requires an approximate doubling of the population size before an asymptotic value is approached. Thus frequency-dependent selection can account for both the existence of two morphs in a population and the observed levels of heritability. It is also shown, both via simulation and theory, that the quantitative genetic model and a simple phenotypic analysis predict the same equilibrium morph proportion.  相似文献   

15.
16.
Appropriate selection of parents for the development of mapping populations is pivotal to maximizing the power of quantitative trait loci detection. Trait genotypic variation within a family is indicative of the family's informativeness for genetic studies. Accurate prediction of the most useful parental combinations within a species would help guide quantitative genetics studies. We tested the reliability of genotypic and phenotypic distance estimators between pairs of maize inbred lines to predict genotypic variation for quantitative traits within families derived from biparental crosses. We developed 25 families composed of ~200 random recombinant inbred lines each from crosses between a common reference parent inbred, B73, and 25 diverse maize inbreds. Parents and families were evaluated for 19 quantitative traits across up to 11 environments. Genetic distances (GDs) among parents were estimated with 44 simple sequence repeat and 2303 single-nucleotide polymorphism markers. GDs among parents had no predictive value for progeny variation, which is most likely due to the choice of neutral markers. In contrast, we observed for about half of the traits measured a positive correlation between phenotypic parental distances and within-family genetic variance estimates. Consequently, the choice of promising segregating populations can be based on selecting phenotypically diverse parents. These results are congruent with models of genetic architecture that posit numerous genes affecting quantitative traits, each segregating for allelic series, with dispersal of allelic effects across diverse genetic material. This architecture, common to many quantitative traits in maize, limits the predictive value of parental genotypic or phenotypic values on progeny variance.  相似文献   

17.
Phenotypic variance results from variation in biological information possessed by individuals. Quantitative geneticists often strive to partition out all environmental variance to measure heritability. Behavioral biologists and ecologists however, require methods to integrate genetic and environmental components of inherited phenotypic variance in order to estimate the evolutionary potential of traits, which encompasses any form of information that is inherited. To help develop this integration, we build on the tools of quantitative genetics and offer the concept of ‘inclusive heritability’ which identifies and unifies the various mechanisms of information transmission across generations. A controversial component of non‐genetic information is animal culture, which is the part of phenotypic variance inherited through social learning. Culture has the unique property of being transmitted horizontally and obliquely, as well as vertically. Accounting for cultural variation would allow us to examine a broader range of evolutionary mechanisms. Culture may, for instance, produce behavioral isolating mechanisms leading to speciation. To advance the study of animal culture, we offer a definition of culture that is rooted in quantitative genetics. We also offer four testable criteria to determine whether a trait is culturally inherited. These criteria may constitute a conceptual tool to study animal culture. We briefly discuss methods to partition out cultural variance. Several authors have recently called for ‘modernizing the modern synthesis’ by including non‐genetic factors such as epigenetics and phenotypic plasticity in order to more fully explain phenotypic evolution. Here, we further propose to broaden the concept of inheritance by incorporating the cultural component of behavior. Applying the concept of inclusive heritability may advance the integration of multiple forms of inheritance into the study of evolution.  相似文献   

18.
Condition, defined as the amount of ‘internal resources’ an individual can freely allocate, is often assumed to be environmentally determined and to reflect an individual’s health and nutritional status. However, an additive genetic component of condition is possible if it ‘captures’ the genetic variance of many underlying traits as many fitness‐related traits appear to do. Yet, the heritability of condition can be low if selection has eroded much of its additive genetic variance, or if the environmental influences are strong. Here, we tested whether feather growth rate – presumably a condition‐dependent trait – has a heritable component, and whether variation in feather growth rate is related to variation in fitness. To this end, we utilized data from a long‐term population study of Siberian jays (Perisoreus infaustus), and found that feather growth rate, measured as the width of feather growth bars (GB), differed between age‐classes and sexes, but was only weakly related to variation in fitness as measured by annual and life‐time reproductive success. As revealed by animal model analyses, GB width was significantly heritable (h2 = 0.10 ± 0.05), showing that this measure of condition is not solely environmentally determined, but reflects at least partly inherited genetic differences among individuals. Consequently, variation in feather growth rates as assessed with ptilochronological methods can provide information about heritable genetic differences in condition.  相似文献   

19.
An integrated epigenetic and genetic approach to common human disease   总被引:12,自引:0,他引:12  
Epigenetic information is heritable during cell division but is not contained within the DNA sequence itself. Despite increasing evidence for and interest in the role of epigenetics in human disease, particularly in cancer, virtually no epigenetic information is routinely or systematically measured at the genome level. The current population-based approach to common disease relates common DNA sequence variants to either disease status or incremental quantitative traits contributing to disease. Although this purely genetic approach is powerful and general, there is currently no conceptual framework to integrate epigenetic information. In this article, we propose an approach to common human disease that incorporates epigenetic variation into genetic studies. Epigenetic variation might also help to explain the late onset and progressive nature of most common diseases, the quantitative nature of complex traits and the role of environment in disease development, which a purely sequence-based approach might not.  相似文献   

20.
The relative roles of natural selection and direct environmental induction, as well as of natural selection and genetic drift, in creating clinal latitudinal variation in quantitative traits have seldom been assessed in vertebrates. To address these issues, we compared molecular and quantitative genetic differentiation between six common frog (Rana temporaria) populations along an approximately 1600 km long latitudinal gradient across Scandinavia. The degree of population differentiation (QST approximately 0.81) in three heritable quantitative traits (age and size at metamorphosis, growth rate) exceeded that in eight (neutral) microsatellite loci (FST = 0.24). Isolation by distance was clear for both neutral markers and quantitative traits, but considerably stronger for one of the three quantitative traits than for neutral markers. QST estimates obtained using animals subjected to different rearing conditions (temperature and food treatments) revealed some environmental dependency in patterns of population divergence in quantitative traits, but in general, these effects were weak in comparison to overall patterns. Pairwise comparisons of FST and QST estimates across populations and treatments revealed that the degree of quantitative trait differentiation was not generally predictable from knowledge of that in molecular markers. In fact, both positive and negative correlations were observed depending on conditions where the quantitative genetic variability had been measured. All in all, the results suggest a very high degree of genetic subdivision both in neutral marker genes and genes coding quantitative traits across a relatively recently (< 9000 years) colonized environmental gradient. In particular, they give evidence for natural selection being the primary agent behind the observed latitudinal differentiation in quantitative traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号