首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this research was to study the possibility of the production of ethanol and enriched fructose syrups from sugar cane molasses using the yeast Saccharomyces cerevisiae ATCC 36858. In batch experiments with a total sugar concentration of between 96.7 g/l and 323.5 g/l, the fructose yield was above 90% of the theoretical value. The ethanol yield and volumetric productivity were in the range of 66% and 77% of the theoretical value, and between 0.53 g ethanol/l × h and 3.15 g ethanol/l × h, respectively. The fructose fraction in the carbohydrates content of the produced syrups was more than 95% when the total initial sugar concentration in the medium was below 273.8 g/l. Some oligosaccharides and glycerol were also produced in all tested media. The maximum amount of produced oligosaccharides including raffinose accounted for 13.4 g/l in the cane molasses medium with 323.5 g/l sugars in the initial phase of the fermentation process. The oligosaccharides produced and raffinose were completely consumed by the end of the fermentation process when the total initial sugar concentration was less than 191.3 g/l. The glycerol concentration was below 9.9 g/l. These findings are useful in the production of ethanol and high fructose syrups using sugar cane molasses.  相似文献   

2.
Polyhydroxyalkanoates (PHAs) accumulating bacteria were isolated under various selective conditions such as pH, salt concentrations and types of heavy metal. Fifty strains of bacterial isolates were found to belong to Bacillus, Proteus, Pseudomonas, Aeromonas, Alcaligenes and Chromobacterium, based on phenotypical features and genotypic investigation. Only twenty five bacterial isolates were selected and observed for the production of PHAs. Interestingly, bacteria belonging to Firmucutes Bacillus sp. produced a high amount of PHAs. The maximum PHAs were accumulated by B. licheniformis PHA 007 at 68.80% of dry cell weight (DCW). Pseudomonas sp., Aeromonas sp., Alcaligenes sp. and Chromobacterium sp. were recorded to produce a moderate amount of PHAs, varying from 10.00-44.32% of DCW. The enzymatic activity was preliminarily analyzed by the ratio of the clear zone diameter to colony diameter. Bacillus gave the highest ratio of hydrolysis zone which corresponds to the highest hydrolytic enzyme activities. Bacillus licheniformis PHA 007 had the highest lipase and protease activity at 2.1 and 5.1, respectively. However, the highest amylase activity was observed in Bacillus sp. PHA 023 at 1.4. Determination of metabolic characteristics was also investigated to check for their ability to consume a wide range of substrates. Bacillus, Aeromonas sp. and Alcaligenes sp. had great ability to utilize a variety of substrates. To decrease high PHA cost, different sources of cheap substrates were tested for the production of PHAs. Bacillus cereus PHA 008 gave the maximal yield of PHA production (64.09% of DCW) when cultivated in anaerobically treated POME. In addition, the accumulation of PHA copolymers such as 3-hydroxyvalerate and 3-hydroxyhexanoate was also observed in Bacillus and Pseudomomas sp. strain 012 and 045, respectively. Eight of the nine isolates accumulated a significant amount of PHAs when inexpensive carbon sources were used as substrates. Here it varied from 1.69% of DCW by B. licheniformis PHA 007 to 64.09% of DCW by B. cereus PHA 008.  相似文献   

3.
Abstract

Polyhydroxyalkanoates (PHAs) are intracellular carbon and energy storage reserve material stored by gram-negative bacteria under nutrient limitation. PHAs are best alternative biodegradable plastics (bio-plastics) due to their resemblance to conventional synthetic plastic. The present study investigated the synergistic effect of nutritional supplements (amino acid and vitamin) on the PHA production by Alcaligenes sp. NCIM 5085 utilizing a sugar refinery waste (cane molasses) under submerged fermentation process. Initially, the effect of individual factor on PHA yield was studied by supplementing amino acids (cysteine, isoleucine, and methionine), vitamin (thiamin), and cane molasses at varying concentration in the production medium. Further, the cultivation medium was optimized by varying the levels of cane molasses, methionine and thiamin using response surface methodology to enhance the PHA yield. The maximum PHA yield of 70.89% was obtained under the optimized condition, which was then scaled up on 7.5?L-bioreactor. Batch cultivation in 7.5?L-bioreactor under the optimized condition gave a maximum PHA yield and productivity of 79.26% and 0.312 gL?1 h?1, respectively. The PHA produced was subsequently characterized as PHB by FTIR. PHB extracted was of relatively high molecular weight and crystallinity index. DSC analysis gave Tg, Tm, and Xc of 4.2, 179?°C and 66%, respectively. TGA analysis showed thermal stability with maximized degradation occurring at 302?°C, which is above the melting temperature (179?°C) of the purified polymer. The extracted polymer, therefore, possessed desirable material properties to be used in food packaging.  相似文献   

4.
5.
Two pigs were weaned at 28 d of age, and one pig each was placed on a corn-soy (CS) or a corn-soy diet containing 40% lactose (CSL). After 28 d a fecal sample was taken from each pig. The fecal bacterial community was fractionated and used as a source of inoculum to determine if high levels of lactose added to CS diets would modify the structure of the hind-gut microbial community and the in vitro breakdown of stachyose (soy molasses served at the source of stachyose) and raffinose. Bacterial growth rate tended to the higher with the CSL diet. Higher growth rates for bacteria from the CSL-fed pig were supported by the higher acetate: propionate production when compared to the CS diet. All the stachyose and raffinose disappeared during the 48 h fermentation. To our knowledge, this is the first report that stachyose or raffinose are completely fermented by the hind-gut bacteria of the weanling pig, and that this process can be affected by the addition of high levels of lactose to the diet.  相似文献   

6.
Plastics, used everyday, are mostly synthetic polymers derived from fossil resources, and their accumulation is becoming a serious concern worldwide. Polyhydroxyalkanoates (PHAs) are naturally produced polyesters synthesized and intracellularly accumulated by many different microorganisms. PHAs are good alternatives to petroleum‐based plastics because they possess a wide range of material properties depending on monomer types and molecular weights. In addition, PHAs are biodegradable and can be produced from renewable biomass. Thus, producing PHAs through the development of high‐performance engineered microorganisms and efficient bioprocesses gained much interest. In addition, non‐natural polyesters comprising 2‐hydroxycarboxylic acids as monomers have been produced by fermentation of metabolically engineered bacteria. For example, poly(lactic acid) and poly(lactic acid‐co‐glycolic acid), which have been chemically synthesized using the corresponding monomers either fermentatively or chemically produced, can be produced by metabolically engineered bacteria by one‐step fermentation. Recently, PHAs containing aromatic monomers could be produced by fermentation of metabolically engineered bacteria. Here, metabolic engineering strategies applied in developing microbial strains capable of producing non‐natural polyesters in a stepwise manner are reviewed. It is hoped that the detailed strategies described will be helpful for designing metabolic engineering strategies for developing diverse microbial strains capable of producing various polymers that can replace petroleum‐derived polymers.  相似文献   

7.
A three-stage process was developed to produce polyhydroxyalkanoates (PHAs) from sugar cane molasses. The process includes (1) molasses acidogenic fermentation, (2) selection of PHA-accumulating cultures, (3) PHA batch accumulation using the enriched sludge and fermented molasses. In the fermentation step, the effect of pH (5–7) on the organic acids profile and productivity was evaluated. At higher pH, acetic and propionic acids were the main products, while lower pH favoured the production of butyric and valeric acids. PHA accumulation using fermented molasses was evaluated with two cultures selected either with acetate or fermented molasses. The effect of organic acids distribution on polymer composition and yield was evaluated with the acetate selected culture. Storage yields varied from 0.37 to 0.50 Cmmol HA/Cmmol VFA. A direct relationship between the type of organic acids used and the polymers composition was observed. Low ammonia concentration (0.1 Nmmol/l) in the fermented molasses stimulated PHA storage (0.62 Cmmol HA/Cmmol VFA). In addition, strategies of reactor operation to select a PHA-accumulating culture on fermented molasses were developed. The combination of low organic loading with high ammonia concentration selected a culture with a stable storage capacity and with a storage yield (0.59 Cmmol HA/Cmmol VFA) similar to that of the acetate-selected culture.  相似文献   

8.
AIMS: The aim of the work was to develop efficient method to identify polyhydroxyalkanoate (PHA)-producing species of Bacillus from numerous soil isolates of bacteria. Identification of the isolates and characterization of the PHA produced by strains positive on the polymerase chain reaction (PCR) was envisaged. METHODS AND RESULTS: Different bacteria isolated from soil were screened by PCR using two sets of primers designed for Bacillus megaterium. Amongst 23 isolates examined, the DNA of 12 isolates reacted positively with the primers giving amplicons identical in size to that obtained from B. megaterium. The isolates which were identified as strains of B. sphaericus, B. circulans, B. brevis and B. licheniformis, produced 11- 41% of PHA in biomass, in sucrose-containing medium, over a growth period of 24-72 h. The nature of the PHA thus produced was analyzed by Fourier transform infrared spectroscopy, gas chromatography and by nuclear magnetic resonance (NMR) and found to contain polyhydroxy butyrate and polyhydroxyvalerate. CONCLUSIONS: The results indicate that most of our isolates from different species contained the B. megaterium type of PHA synthase. Bacillus licheniformis appeared to belong to another group as it did not react with both sets of primers. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the universality of the B. megaterium type of PHA synthase in soil isolates of Bacillus. Some variations were also found.  相似文献   

9.
The PHA-degrading isolate, strain P37C, was enriched from residential compost for its ability to hydrolyze the medium chain length PHA, poly(beta-hydroxyoctanoate) (PHO). It was subsequently found to grow on a wide range of PHAs, including both short chain length and medium chain length PHAs. The isolate was identified as belonging to the genus Comamonas. Strain P37C formed clear zones on poly(beta-hydroxybutyrate) (PHB), (PHO) and poly(beta-hydroxyphenylvalerate) (PHPV) overlay plates. PHA clear zone tubes were prepared using seven different kinds of PHAs, ranging from PHB with four-carbon repeating units, to poly(beta-hydroxyoctanoate-co-beta-hydroxyundecanoate) (PHOU) with 8- and 11-carbon repeating units. There was a direct correlation between PHA side chain length and rate of hydrolysis of the PHAs. A series of PHOUs containing varying percentages of unsaturated bonds were used to make a series of epoxidized PHOUs (PHOEs) with varying percentages of epoxy functions. Results of clear zone tube assays showed that these functionalized PHAs were all biodegradable by strain P37C, and there was no apparent correlation between rate of biodegradation and the proportion of functional groups in the PHAs. Biodegradability of these PHAs was verified using respirometry and enzyme assays. Cell-free supernatants containing activity toward PHAs were prepared, and strain P37C was shown to synthesize at least two distinct PHA depolymerases for the hydrolysis of SCL and MCL PHAs.  相似文献   

10.
Polyhydroxyalkanoates are biodegradable polymers produced by prokaryotic organisms from renewable resources. The production of PHAs by submerged fermentation processes has been intensively studied over the last 30 years. In recent years, alternative strategies have been proposed, such as the use of solid-state fermentation or the production of PHAs in transgenic plants. This paper gives an overview of submerged and solid-state fermentation processes used to produce PHAs from waste materials and by-products. The use of these low-cost raw materials has the potential to reduce PHA production costs, because the raw material costs contribute a significant part of production costs in traditional PHA production processes.  相似文献   

11.
Due to increasing concerns about environmental problems, climate change and limited fossil resources, bio-based production of chemicals and polymers is gaining attention as one of the solutions to these problems. Polyhydroxyalkanoates (PHAs) are polyesters that can be produced by microbial fermentation. PHAs are synthesized using monomer precursors provided from diverse metabolic pathways and are accumulated as distinct granules inside the cells. On the other hand, most so-called bio-based polymers including polybutylene succinate, polytrimethylene terephthalate, and polylactic acid (PLA) are synthesized by a chemical process using monomers produced by fermentation. PLA, an attractive biomass-derived plastic, is currently synthesized by heavy metal-catalyzed ring opening polymerization of L-lactide that is made from fermentation-derived L-lactic acid. Recently, a complete biological process for the production of PLA and PLA copolymers from renewable resources has been developed by direct fermentation of recombinant bacteria employing PHA biosynthetic pathways coupled with a novel metabolic pathway. This could be accomplished by establishing a pathway for generating lactyl-CoA and engineering PHA synthase to accept lactyl-CoA as a substrate combined with systems metabolic engineering. In this article, we review recent advances in the production of lactate-containing homo- and co-polyesters. Challenges remaining to efficiently produce PLA and its copolymers and strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are discussed.  相似文献   

12.
The production of enriched fructose syrups and ethanol from beet molasses using Saccharomyces cerevisiae ATCC 36858 was studied. In batch experiments with a total sugar concentration between 94.9 and 312.4 g/L, the fructose yield was above 93% of the theoretical value. The ethanol yield and volumetric productivity in the beet molasses media with sugar concentration below 276.2 g/L were in the range of 59-76% of theoretical value and between 0.48 and 2.97 g of ethanol/(L x h), respectively. The fructose fraction in the carbohydrates content of the produced syrups was more than 95% when the total initial sugar concentration in the medium was below 242.0 g/L. Some oligosaccharides and glycerol were also produced in all tested media. Raffinose and the produced oligosaccharides were completely consumed by the end of the fermentation process when the total initial sugar concentration was below 190.1 g/L. The glycerol concentration was below 16.1 g/L. The results could be useful for a potential industrial production of ethanol and high-fructose syrup from sugar beet molasses.  相似文献   

13.
AIMS: The aim of this study was to obtain improved strains of pectinolytic yeasts adapted to the conditions of an industrial fermentation process, which was continuously operated to convert citrus molasses into ethanol. METHODS AND RESULTS: The starter yeast of the industrial fermentation process was a commercial baker's yeast, which was capable of growing without forming any secretion halo of pectinase activity on solid medium. Nevertheless, isolates showing secretion of pectinolytic activity on plates were obtained from the fermentation process. The secretion of pectin-degrading activity by isolates on plates was repressed by galactose and improved as the result of colony aging on polygalacturonic acid plates at 30 degrees C. Liquefaction of polygalacturonate gels as well as the splitting of the pectin-degrading activity into a wall-linked and a supernatant fraction were also observed when the starter yeast was propagated under agitation in liquid medium containing pectin. CONCLUSIONS: Isolates capable of secreting pectinolytic activity on plates were predominant at the end of the citrus molasses fermentation. Nevertheless, the sizes of the secretion haloes on plates were not necessarily an indication of the levels of pectinolytic activity secreted in the liquid medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Improved pectinolytic strains of Saccharomyces can be used as a source of pectinases for a variety of applications. This organism also participates in plant deterioration processes.  相似文献   

14.
Polyhydroxyalkanoates (PHAs) are biopolyesters that generally consist of 3-, 4-, 5-, and 6-hydroxycarboxylic acids, which are accumulated as carbon and energy storage materials in many bacteria in limited growth conditions with excess carbon sources. Due to the diverse substrate specificities of PHA synthases, the key enzymes for PHA biosynthesis, PHAs with different material properties have been synthesized by incorporating different monomer components with differing compositions. Also, engineering PHA synthases using in vitro-directed evolution and site-directed mutagenesis facilitates the synthesis of PHA copolymers with novel material properties by broadening the spectrum of monomers available for PHA biosynthesis. Based on the understanding of metabolism of PHA biosynthesis, recombinant bacteria have been engineered to produce different types of PHAs by expressing heterologous PHA biosynthesis genes, and by creating and enhancing the metabolic pathways to efficiently generate precursors for PHA monomers. Recently, the PHA biosynthesis system has been expanded to produce unnatural biopolyesters containing 2-hydroxyacid monomers such as glycolate, lactate, and 2-hydroxybutyrate by employing natural and engineered PHA synthases. Using this system, polylactic acid (PLA), one of the major commercially-available bioplastics, can be synthesized from renewable resources by direct fermentation of recombinant bacteria. In this review, we discuss recent advances in the development of the PHA biosynthesis system as a platform for tailor-made polyesters with novel material properties.  相似文献   

15.
Polyhydroxyalkanoates (PHAs) are biopolyesters produced by microorganisms that are environmentally friendly. PHAs can be used to replace traditional plastic to reduce environmental pollution in various fields. PHA production costs are high because PHA must be produced from a carbon substrate. The purpose of this study was to find the strain that can used the BDF by-product as the sole carbon source to produce high amounts of medium-chain-length PHA. Three isolates were evaluated for potential PHA production by using biodiesel-derived crude glycerol as the sole carbon source. Among them, Pseudomonas mosselii TO7 yielded high PHA content. The PHA produced from P. mosselii TO7 were medium-chain-length-PHAs. The PHA content of 48% cell dry weight in 48 h with a maximum PHA productivity of 13.16 mg PHAs L?1 h?1. The narrow polydispersity index value of 1.3 reflected the homogeneity of the polymer chain, which was conducive to industrial applications.  相似文献   

16.
AIMS: Knowledge of the species composition of complex bacterial communities is still very limited. The main objectives of this study were to identify medium-chain-length polyhydroxyalkanoates (mcl-PHAs)-producing bacteria from activated sludge fed with methanol as well as to characterize their PHA operon. METHODS AND RESULTS: The identification was based on PCR amplification of mcl-PHA synthase gene fragments. In the analysed sample, four isolates possessing mcl-PHA synthesis systems were distinguished. The results of a 16S rDNA sequence analysis revealed that three strains belonged to Pseudomonas species and the fourth one was characterized as Comamonas testosteroni. CONCLUSIONS: The results of this study indicate that the PCR-RFLP approach is an excellent way to identify mcl-PHA-synthesizing micro-organisms. The discovery of 4 genetic variants, among the 20 analysed, demonstrates that microbial diversity of activated sludge is high and thus offers a great opportunity for the discovery of novel gene forms. SIGNIFICANCE AND IMPACT OF THE STUDY: An important discovery of this study is that C. testosteroni could harbour mcl-PHA operon. Moreover, the results obtained indicate that PHAs synthesis ability can be spread by horizontal gene transfer. The results of a comparative phylogenetic analysis revealed that mcl-PHA-synthesizing bacteria can be divided into Pseudomonas fluorescens and Pseudomonas aeruginosa groups.  相似文献   

17.
An overview is provided on the possibilities of producing positively and negatively charged poly(β-hydroxyalkanoates), PHAs. A large variety of bacterial polyesters with functionalized terminal side chains can be produced in microbial fermentation processes by a direct polymerization of respective carbon sources, that is, carbon sources that carry functional groups in their ω-position. However, charged PHAs are not accessible by a direct approach and must be synthesized via polymer-analogous reactions of functionalized bacterial polyesters. PHA polyanions are produced by converting the terminal functional groups into carboxylate groups, while PHA polycations are produced by introducing terminal amino groups. PHAs with terminal vinyl groups emerged as most suitable PHA precursors, as they can be produced in relatively high yields and the double bonds are sufficiently reactive. The oxidation of vinyl groups yields PHA polyanions. The conversion of terminal vinyl groups into epoxides with a subsequent ring-opening reaction with an amine yields PHA polycations. Other functionalized PHA that potentially lend themselves to polymer-analogous reactions are reviewed.  相似文献   

18.

Background

Polyhydroxyalkanoates are a good substitute for synthetic plastic because they are highly biocompatible, ecofriendly, and biodegradable. Bacteria in freshwater bodies such as rivers, tube wells, and canals are exposed to alternating high and low concentrations of substrates that induce PHA production.

Methods

Fresh water samples were collected for isolation of bacterial strains. Screening of PHA in bacterial cells was performed with Sudan and Nile Red staining. Extracted PHA was characterized by FTIR.

Results

In this study, nine bacterial isolates were selected for PHA production on the basis of phenotypic screening. Their ability to accumulate PHAs was determined using different monosaccharides and disaccharides. Two bacterial isolates Bacillus cereus T1 (KY746353) and Bacillus cereus R3 (KY746354) produced PHAs. Optimal growth of the bacterial strain (T1) was observed in the presence of glucose, followed by maximum production of PHAs (63% PHAs) during the logarithmic phase of growth. B. cereus R3 (KY746354) accumulated 60% PHAs by dry cell weight.

Conclusion

PHA accumulation was relatively less with fructose, but both strains showed increased production (up to 50%) with sucrose. The polymer produced was characterized by Fourier-transform infrared spectroscopy (FTIR), which showed that the compound contains short-chain PHAs.
  相似文献   

19.
A flocculent killer yeast, Saccharomyces cerevisiae strain H-1, which was selected for ethanol fermentation of beet molasses, has a tendency to lose its viability in distillery waste water (DWW) of beet molasses mash after ethanol fermentation. Through acclimations of strain H-1 in DWW, strain W-9, resistant to DWW, was isolated. Strain M-9, resistant to 2-deoxyglucose was further isolated through acclimations of strain W-9 in medium containing 150 ppm 2-deoxyglucose. A fermentation test of beet molasses indicated that the ethanol productivity and sugar consumption were improved by strain M-9 compared to the parental strain H-1 and strain W-9. The concentration of ethanol produced by strain M-9 was 107.2 g/l, and the concentration of residual sugars, which were mainly composed of sucrose and fructose, were lower than those produced by the parental strain H-1 and strain W-9 at the end of fermentation of beet molasses.  相似文献   

20.
Bacterial polyhydroxyalkanoates   总被引:34,自引:0,他引:34  
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAs) synthesized by numerous bacteria as intracellular carbon and energy storage compounds and accumulated as granules in the cytoplasm of cells. More than 80 HAs have been detected as constituents of PHAs, which allows these thermoplastic materials to have various mechanical properties resembling hard crystalline polymer or elastic rubber depending on the incorporated monomer units. Even though PHAs have been recognized as good candidates for biodegradable plastics, their high price compared with conventional plastics has limited their use in a wide range of applications. A number of bacteria including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, methylotrophs, pseudomonads, and recombinant Escherichia coli have been employed for the production of PHAs, and the productivity of greater than 2 g PHA/L/h has been achieved. Recent advances in understanding metabolism, molecular biology, and genetics of the PHA-synthesizing bacteria and cloning of more than 20 different PHA biosynthesis genes allowed construction of various recombinant strains that were able to synthesize polyesters having different monomer units and/or to accumulate much more polymers. Also, genetically engineered plants harboring the bacterial PHA biosynthesis genes are being developed for the economical production of PHAs. Improvements in fermentation/separation technology and the development of bacterial strains or plants that more efficiently synthesize PHAs will bring the costs down to make PHAs competitive with the conventional plastics. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号