首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
1. The accumulation of glucose, fructose and sorbitol was determined in the lens, liver, and blood from normal, streptozotocin-induced diabetic, and insulin-treated diabetic rats and mice. 2. Sorbitol concentration in rat lens was 10-100 times greater than that in mouse lens, with the highest concentrations in the diabetic animals. 3. Sorbitol levels in rat and mouse liver, and mouse lens were similar and increased only slightly under hyperglycemic conditions. 4. Fructose accumulation was similar in rat and mouse liver and was elevated in the diabetic mouse blood and diabetic rat lens. 5. Aldose reductase activity in rat lens was approximately 350 times that of mouse lens. 6. Lenticular sorbitol dehydrogenase activity in rats was approximately ten times that in mouse lens. 7. Administration of insulin tended to lower liver glucose and subsequent sorbitol formation in the diabetic rat and mouse.  相似文献   

2.
Total lipid, sucrose, glucose, sorbitol and myo-inositol contents in individual layers from normal and alloxan-diabetic rabbit retinas were measured using gravimetric and enzymatic microtechniques. Pure samples of nine retinal layers were microdissected from freeze-dried retinal cryosections. The lipid content was measured by loss of weight after ethanol and hexane extraction. Retinal lipid varied 3-fold across the retina and was not influenced by diabetes. Sucrose, glucose, sorbitol, and myo-inositol were measured with fluorimetric microassays. Sucrose infused intravenously prior to sampling the tissue did not traverse the outer blood retinal barrier of the normal or the diabetic retina. In both normals and diabetics, glucose followed a diffusional curve, with outer and inner retinal concentrations, respectively, equal to choroidal blood and vitreal glucose concentrations. Sorbitol was elevated in all retinal layers of diabetic animals. The peak sorbitol concentrations, of 2 mmol/kg defatted dry weight in diabetics, were not high enough to be osmotically significant. Retinal myo-inositol, of the order found in brain tissue (10-30 mmol/kg defatted dry tissue), was decreased by 22-40% in all retinal layers of the diabetics. The results indicate that diabetes affects the metabolism of retinal structures independently of the small blood vessel disease that is the hallmark of diabetes of long duration. It is conceivable that primary intraretinal metabolic alterations cause, aggravate, or perpetuate the well known degenerative processes that occur in retinal blood vessels in diabetes.  相似文献   

3.
4.
A series of in vivo and in vitro investigations was performed to examine the localisation of sorbitol pathway activity in the rat renal cortex and to investigate the possible relation that the acculumation of sorbitol pathway intermediates in renal cortical tissue may have to the pathogenesis of renal complications in diabetes mellitus. Neither of the sorbitol pathway intermediates, sorbitol or fructose, were detected either in intact glomeruli which had been isolated from rats rendered chronically diabetic with streptozotocin, or in metabolically active glomeruli which had been incubated in vitro in high glucose media. Such data agreed with previously published observations that the enzyme aldose reductase is not present in renal glomeruli, and suggested that changes in sorbitol pathway activity cannot be directly related to the pathogenesis of diabetic glomerulosclerosis. Sorbitol was detected in low concentrations (3.1 mu-mol/g protein) in cortical tubules which had been isolated from the renal cortex of rats rendered chronically diabetic with streptozotocin. This concentration of sorbitol was higher than that in the intact renal cortex of the diabetic animal (0.3 mu-mol/g protein) or in the cortical tubules of non-diabetic animals (0.5 mu-mol/g protein). It is apparent that the renal cortical tubule is a major site of sorbitol pathway activity in the renal cortex. However, there is presently no obvious causal relationship between the accumulation of such relatively low concentrations of sorbitol in the renal cortical tubule and the pathogenesis of glomerulosclerosis or cortical tubular lesions in diabetes.  相似文献   

5.
Summary A mutant ofZymomonas mobilis deficient in the utilization of fructose for growth and ethanol formation was shown to lack fructokinase activity. When grown in media which contained glucose+fructose or sucrose, both the mutant and wild type produced sorbitol in amounts up to 60 g·l-1, depending on the initial concentrations of sugars. Sorbitol formation was accompanied by an accumulation of acetaldehyde, gluconate, and acetoin. A ferricyanide-dependent sorbitol dehydrogenase could be localized in the cell membrane; it thus resembles the sorbitol dehydrogenase ofGluconobacter suboxydans. Neither a NAD(P)H dependent reduction of fructose nor a NAD(P) dependent dehydrogenation of sorbitol could be detected in cell-free extracts. The use of fructose-negative mutants ofZ. mobilis for the enrichment of fructose in glucose+fructose mixtures is discussed.  相似文献   

6.
Sorbitol dehydrogenase (l-iditol:NAD(+) oxidoreductase, EC 1.1.1.14) has been detected and characterized from apple (Malus domestica cv. Granny Smith) mesocarp tissue cultures. The enzyme oxidized sorbitol, xylitol, l-arabitol, ribitol, and l-threitol in the presence of NAD. NADP could not replace NAD. Mannitol was slightly oxidized (8% of sorbitol). Other polyols that did not serve as substrate were galactitol, myo-inositol, d-arabitol, erythritol, and glycerol. The dehydrogenase oxidized NADH in the presence of d-fructose or l-sorbose. No detectable activity was observed with d-tagatose. NADPH could partially substitute for NADH.Maximum rate of NAD reduction in the presence of sorbitol occurred in tris(hydroxymethyl)aminomethane-HCl buffer (pH 9), or in 2-amino-2-methyl-1,3-propanediol buffer (pH 9.5). Maximum rates of NADH oxidation in the presence of fructose were observed between pH 5.7 and 7.0 with phosphate buffer. Reaction rates increased with increasing temperature up to 60 C. The K(m) for sorbitol and xylitol oxidation were 86 millimolar and 37 millimolar, respectively. The K(m) for fructose reduction was 1.5 molar.Sorbitol oxidation was completely inhibited by heavy metal ions, iodoacetate, p-chloromercuribenzoate, and cysteine. ZnSO(4) (0.25 millimolar) reversed the cysteine inhibition. It is suggested that apple sorbitol dehydrogenase contains sulfhydryl groups and requires a metal ion for full activity.  相似文献   

7.
Recent evidence has suggested a role for the polyol pathway in pathogenesis of cell damage in diabetes Glucose may be phosphorylated to glucose-6-phosphate via hexokinase and enter glycolysis or reduced to sorbitol via aldose reductase to enter the polyol pathway. The poorly diffusible sorbitol is converted via sorbitol dehydrogenase to fructose. Hexokinase, aldose reductase and sorbitol dehydrogenase activities were measured in glomeruli (G) and small arteries (SA) taken from normal and diabetic human kidneys, Hexokinase in diabetic G was 1688, which was significantly decreased from normal, 3147 mmoles/kg-1/h-1. Alodse reductase was significantly elevated in diabetic G,56-6, compared to normal G,10-8 mmoles/kg-1/h-1. In contrast, sorbitol dehydrogenase was significantly depressed in diabetic G, 3-7 VERSUs 10-9 mmoles/kg-1/h-1. The enzymatic changes observed in diabetic G would facilitate accumulation of sorbitol and therefore could contribute to the progression of glomerulosclerosis. The activity of hexokinase was also significantly reduced in SA, whereas aldose reductase and sorbitol dehydrogenase were unchanged.  相似文献   

8.
Vanadium compounds are potent in controlling elevated blood glucose levels in experimentally induced diabetes. However the toxicity associated with vanadium limits its role as therapeutic agent for diabetic treatment. A vanadium compound sodium orthovanadate (SOV) was given to alloxan-induced diabetic Wistar rats in lower doses in combination withTrigonella foenum graecum, a well-known hypoglycemic agent used in traditional Indian medicines. The effect of this combination was studied on lens morphology and glucose metabolism in diabetic rats. Lens, an insulin-independent tissue, was found severely affected in diabetes showing visual signs of cataract. Alterations in the activities of glucose metabolizing enzymes (hexokinase, aldose reductase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase) and antioxidant enzymes (glutathione peroxidase, glutathione reductase) besides the levels of related metabolites, [sorbitol, fructose, glucose, thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH)]were observed in the lenses from diabetic rats and diabetic rats treated with insulin (2 IU/day), SOV (0.6 mg/ml),T. f. graecum seed powder (TSP, 5%) and TSP (5%) in combination with lowered dose of vanadium SOV (0.2 mg/ml), for a period of 3 weeks. The activity of the enzymes, hexokinase, aldose reductase and sorbitol dehydrogenase was significantly increased whereas the activity of glucose-6-phosphate dehydrogenase, glutathione peroxidase and glutathione reductase decreased significantly in lenses from 3 week diabetic rats. Significant increase in accumulation of metabolites, sorbitol, fructose, glucose was found in diabetic lenses. TBARS measure of peroxidation increased whereas the levels of antioxidant GSH decreased significantly in diabetic condition. Insulin restored the levels of altered enzyme activities and metabolites almost to control levels. Sodium orthovanadate (0.6 mg/ml) andTrigonella administered separately to diabetic animals could partially reverse the diabetic changes, metabolic and morphological, while vanadate in lowered dose in combination withTrigonella was found to be the most effective in restoring the altered lens metabolism and morphological appearance in diabetes. It may be concluded that vanadate at lowered doses administered in combination withTrigonella was the most effective in controlling the altered glucose metabolism and antioxidant status in diabetic lenses, these being significant factors involved in the development of diabetic complications, that reflects in the reduced lens opacity  相似文献   

9.
Aldose reductase activity is increased in neuroblastoma cells grown in media containing 30 mM fructose and/or 30 mM glucose. Neuroblastoma cells cultured in media supplemented with increased concentrations of glucose and fructose amass greater amounts of sorbitol than do cells exposed to media containing only high glucose concentrations. The increase in sorbitol content is dependent on the fructose and glucose concentration in the media. The increase in sorbitol content caused by exposing neuroblastoma cells to media containing 30 mM glucose/30 mM fructose is due to a protein synthesis sensitive mechanism and not to an alteration in the redox state. The addition of sorbinil to media containing 30 mM glucose blocks the increase in sorbitol content. In contrast, sorbinil treatment of media containing 30 mM glucose/30 mM fructose does not totally block the increase in sorbitol levels. myo-Inositol accumulation and incorporation into inositol phospholipids and intracellular myo-inositol content are decreased in cells chronically exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose compared to cells cultured in unsupplemented media or media containing 30 mM fructose. However, maximal depletion of myo-inositol accumulation and intracellular content occurs earlier in cells exposed to media containing 30 mM glucose/30 mM fructose than in cells exposed to media supplemented with 30 mM glucose. Sorbinil treatment of media containing 30 mM glucose/30 mM fructose maintains cellular myo-inositol accumulation and incorporation into phospholipids at near normal levels. myo-Inositol content in neuroblastoma cells chronically exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose recovers within 72 h when the cells are transferred to unsupplemented media or media containing 30 mM fructose. In contrast, the sorbitol content of cells previously exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose then transferred into media containing 30 mM fructose remains elevated compared to the sorbitol content of cells transferred into unsupplemented media. These data suggest that fructose may be activating or increasing sorbinil-resistant aldose reductase activity as well as partially blocking sorbitol dehydrogenase activity. The presence of increased concentrations of fructose in combination with increased glucose levels may enhance alterations in cell metabolism and properties due to increased sorbitol levels.  相似文献   

10.
1. Sorbitol and fructose levels were significantly elevated in the lens, the sciatic nerve, the retina and the kidney of diabetic Chinese hamsters and inositol level was significantly decreased in the lens and sciatic nerve of diabetics. 2. The activity of an aldose reductase in the kidney was not different between normal and diabetic Chinese hamsters. 3. An aldose reductase inhibitor (ONO-2235) had no effect in sorbitol, fructose and inositol contents of all these tissues from diabetic Chinese hamsters. 4. These results suggest that diabetic Chinese hamsters produce polyol accumulation in tissues but that there is a clear species-specific difference to inhibition of aldose reductase.  相似文献   

11.
Complications common to type I diabetes, such as cataracts and cardiovascular disorders, have been associated with activation of the polyol pathway, which converts glucose to fructose via the intermediate, sorbitol. Under normal glycemic conditions, glucose is typically targeted for glycolysis or the pentose phosphate pathway through phosphorylation by hexokinase. When glucose levels are elevated under diabetic conditions, hexokinase becomes saturated, and the excess glucose is then shunted to aldose reductase, which converts glucose to sorbitol. In the present study, we examined the potential effects of this pathway on the maturation process in mouse oocytes. Increasing concentrations of sorbitol suppressed FSH-induced maturation in oocytes from control mice. Culturing oocytes from diabetic mice in the presence of inhibitors of aldose reductase reversed the suppression of FSH-induced meiotic maturation. When oocytes from control mice were cultured with activators of aldose reductase, FSH-induced maturation was compromised. In addition, treatment with sorbitol or activators of the polyol pathway led to reduced cell-cell communication between the oocyte and the cumulus cells, as well as compromised FSH-mediated cAMP production and de novo purine synthesis. These data indicate that the suppression of FSH-induced meiotic maturation observed in oocytes from diabetic mice may result from a shunting of glucose through the polyol pathway.  相似文献   

12.
Sorbitol levels were determined in lens of genetically obese (ob/ob) and diabetic (db/db) mice, as well as in lean mice (+/db, +/ob) made diabetic by administration of streptozotocin (STZ). Treatment of lean mice with STZ resulted in hypoinsulinemia, whereas the ob/ob and db/db mice were hyperinsulinemic. Hyperglycemia was present in STZ-treated +/db and +/ob mice and in db/db mice, whereas relative euglycemia was observed in ob/ob mice and untreated +/db and +/ob mice. Sorbitol levels were elevated in lens tissue of db/db mice and STZ-treated +/db. In contrast, no changes in sorbitol content were observed in ob/ob mice and +/ob mice treated with STZ, suggesting that aldose reductase activity in lens of this animal model is considerably less than that present in db/db mice. Oral treatment of db/db mice and STZ-treated +/db mice with Ponalrestat reduced hyperglycemia-induced sorbitol accumulation significantly in lens, indicating that aldose reductase inhibitors may ameliorate long-term complications associated with sorbitol accumulation in diabetes.  相似文献   

13.
吕康模  钟学礼 《生理学报》1990,42(4):401-405
本文用四氧嘧啶诱导产生糖尿病动物模型,分别于糖尿病产生后第4,8,12周测定大鼠坐骨神经匀浆山梨醇通路活性,肌醇含量和哇巴因敏感的和不敏感的 ATP 酶活性。与同龄正常对照组比较,糖尿病发生4周后,坐骨神经葡萄糖含量增加3—4倍,果糖增加3—5倍,山梨醇增加6—9倍,肌醇含量降低到对照组的50%,总 ATP 酶和哇巴因敏感的Na~+-K~+-ATP 酶活性均极显著地低于同龄对照组(P<0.01)。结果提示这些代谢变化可能是糖尿病神经病变发病机制中的重要环节。  相似文献   

14.
1. Cytosolic and mitochondrial ATP and ADP concentrations of liver cells isolated from normal fed, starved and diabetic rats were determined. 2. The cytosolic ATP/ADP ratio was 6,9 and 10 in normal fed, starved and diabetic rats respectively. 3. The mitochondrial ATP/ADP ratio was 2 in normal and diabetic rats and 1.6 in starved rats. 4. Adenosine increased the cytosolic and lowered the mitochondrial ATP/ADP ratio, whereas atractyloside had the opposite effect. 5. Incubation of the hepatocytes with fructose, glycerol or sorbitol led to a fall in the ATP/ADP ratio in both the cytosolic and the mitochondrial compartment. 6. The interrelationship between the mitochondrial ATP/ADP ratio and the phosphorylation state of pyruvate dehydrogenase in intact cells was studied. 7. In hepatocytes isolated from fed rats an inverse correlation between the mitochondrial ATP/ADP ratio and the active form of pyruvate dehydrogenase (pyruvate dehydrogenase a) was demonstrable on loading with fructose, glycerol or sorbitol. 8. No such correlation was obtained with pyruvate or dihydroxyacetone. For pyruvate, this can be explained by inhibition of pyruvate dehydrogenase kinase. 9. Liver cells isolated from fed animals displayed pyruvate dehydrogenase a activity twice that found in vivo. Physiological values were obtained when the hepatocytes were incubated with albumin-oleate, which also yielded the highest mitochondrial ATP/ADP ratio.  相似文献   

15.
Abstract— Sorbitol dehydrogenase (EC 1.1.1.14) was isolated and purified 700-fold from rat brain. Most substrate specificities and properties are similar to those reported for sorbitol dehydrogenase from other mammalian tissues; however, the substrate specificity of this brain enzyme does not conform to the d -cis 2,4 dihydroxy configuration. The physiological substrate for sorbitol dehydrogenase is probably sorbitol. The isolation of sorbitol dehydrogenase from rat brain tissue is confirmation that (1) all the constituents of the sorbitol (polyol) pathway are present in the brain and that (2) fructose synthesis from glucose in this tissue proceeds via the intermediate formation of sorbitol.  相似文献   

16.
Sorbitol, inositol and nerve conduction in diabetes   总被引:8,自引:0,他引:8  
K R Gillon  J N Hawthorne 《Life sciences》1983,32(17):1943-1947
Motor nerve conduction velocity was lower in streptozotocin-diabetic rats than in controls. Treatment with the aldose reductase inhibitor Sorbinil restored conduction velocity to normal. Diabetic rats had an increased concentration of sorbitol and reduced free inositol in sciatic nerve. Sorbinil corrected both defects. Inositol administration to diabetic rats also restored conduction velocity to normal. Genetically diabetic mice had reduced concentrations of inositol in sciatic nerve but fructose and sorbitol were normal. Glucose concentration was considerably increased.  相似文献   

17.
The ability of aldose reductase inhibitors to prevent the decline in neural Na+,K(+)-ATPase activity in diabetic rats has not been confirmed by all laboratories. In this study, the efficacy of two structurally different aldose reductase inhibitors was evaluated under different experimental conditions. Na+,K(+)-ATPase activity was measured in sciatic nerves from streptozocin-induced diabetic rats fed normal rodent chow or a chow supplemented with 68% sucrose. Nerve homogenates from chow-fed rats were prepared with a Dounce tissue grinder, whereas homogenates from the sucrose-fed rats were prepared with an Ultra-Turrax disperser. In the chow-fed rats, 4 weeks of untreated diabetes resulted in an increase in neural sorbitol and fructose, a decrease in myoinositol, and a 54% decline in Na+,K(+)-ATPase activity. Sorbinil administration (20 mg/kg/day) completely prevented the rise in sorbitol and fructose and the depletion of myoinositol, but did not prevent the decline in Na+,K(+)-ATPase activity. In diabetic rats fed the sucrose diet for 4, 6, and 8 weeks, the neural sorbitol and fructose levels were elevated, the myoinositol concentration declined, and the Na+,K(+)-ATPase activity was 26 to 28% below the control. Prevention or intervention treatment with sorbinil (20 mg/kg/day) or tolrestat (50 mg/kg/day) for 4 to 6 weeks prevented the alterations in sorbitol, fructose, and myoinositol, and also prevented the decline in Na+,K(+)-ATPase activity. In conclusion, prevention and intervention therapy with aldose reductase inhibitors prevented the decline in Na+,K(+)-ATPase in sciatic nerves of sucrose-fed streptozocin-diabetic rats that were homogenized with an Ultra-Turrax disperser, but not in sciatic nerves from streptozocin-diabetic rats fed normal rodent chow that were homogenized with a Dounce tissue grinder. These findings indicate that the assessment of aldose reductase inhibitor efficacy is dramatically affected by the type of nerve preparation assayed and/or the diet.  相似文献   

18.
The influences of carbon sources, fructose, glucose, sorbitol and sucrose on shoot proliferation and in vitro rooting of cork oak (Quercus suber L.) were compared at a wide range of concentrations (1–6%, w/v). The highest number of shoots occurred on glucose-containing medium. Nevertheless, we have chosen 3% sucrose which induced a similar rate of proliferation but favoured shoot elongation, permitting an effectively higher number of shoots during transfers. Sorbitol and autoclaved fructose did not stimulate shoot proliferation. Adventitious root formation was strongly dependent on carbohydrate supply. Sorbitol and autoclaved fructose were completely ineffectively on rooting induction. Glucose was the most effective carbon source on rooting promotion followed by sucrose and filter-sterilized fructose. The rooting response induced by fructose was dependent on the sterilizing procedure. The number of adventitious roots produced per shoot increased with increasing glucose and sucrose concentration. The content of reducing sugars in leaves of proliferation cultures and in leaves and roots of rooted plantlets was more dependent on carbon concentration than on glucose or sucrose supplement. The results presented here show that carbohydrate requirements during cork oak micropropagation depend upon the phase of culture. Sucrose (3%) and glucose (4%) were the best carbon sources respectively during proliferation and rooting phases.  相似文献   

19.
Formation of sorbitol 6-phosphate by bovine and human lens aldose reductase and sorbitol dehydrogenase by the reduction of glucose 6-phosphate and fructose 6-phosphate, respectively, has been demonstrated. The reaction product has been identified by Dowex-formate column chromatography, gas chromatography and mass spectrometry. Sorbitol 6-phosphate can also be formed by the phosphorylation of sorbitol by lens sorbitol kinase in the presence of ATP.  相似文献   

20.
Abstract: In experimental diabetic neuropathy, defective arachidonic acid metabolism characterized by a decrease in the proportion of glycerophospholipid arachidonoyl-containing molecular species (ACMS) occurs and has been implicated in the pathogenesis of the disorder. In this study, we evaluated the suitability of a tumor-derived human Schwann cell line (NF1T) as a model to investigate the mechanism underlying the loss of ACMS. NF1T cells grown in 30 versus 5.5 m M glucose undergo a marked reduction in ACMS in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, in a manner resembling that of diabetic nerve. The depletion of ACMS can be reversed on transferring the cells from 30 m M glucose to medium containing physiological levels of glucose. Cells maintained in 5.5 m M glucose plus 25 m M mannitol or sorbitol did not exhibit decreased ACMS levels, indicating that osmotic effects were not responsible for ACMS depletion. However, growth in 25 m M fructose elicited a reduction of ACMS similar to that produced by 30 m M glucose. Excessive glucose flux through the polyol pathway has been implicated in the neural and vascular abnormalities associated with diabetes. Therefore, we examined the effects of polyol pathway inhibitors, including two aldose reductase inhibitors, zopolrestat and sorbinil, and a sorbitol dehydrogenase inhibitor (SDI), CP166,572, on ACMS levels in NF1T cells cultured in elevated glucose concentrations. At 200 µ M , zopolrestat fully and sorbinil partially corrected ACMS depletion. The SDI at concentrations up to 100 µ M failed to affect diminished ACMS levels. Neither zopolrestat nor the SDI restored ACMS levels reduced in the presence of elevated fructose concentrations. These findings suggest that enhanced flux through the polyol pathway and, in particular, elevated aldose reductase activity may play a significant role in the reduction of ACMS levels in the cells brought about by elevated glucose levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号