首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigating the impact of plant species on sulphur (S) availability in the rhizosphere soil is agronomically important to optimize S fertilization. Bulk, rhizosphere soils and the roots of field-grown rape and barley were sampled 7 times (every fortnight), from March to June, at plant maturity. Root carbon (C) and nitrogen (N) in water extract, along with soil SO42−-S, labile soil organic-C (HWC) and -N (HWN) in hot water extract, as well as soil arylsulphatase activity were then monitored. The average concentrations of both HWC and HWN were observed in the following decreasing order: rape rhizosphere soil >barley rhizosphere soil >bulk soil. In parallel, the average contents of water extractable-C and -N in rape roots were higher than those in barley roots. These results suggest that soil C and N contents in hot water extract (including rhizodeposition) were correlated with C and N released by roots. Great ARS activities found in rape rhizosphere soil were accompanied by great SO42−-S mineralization over time. Finally, bulk and rhizosphere soils of rape and barley were pooled from the seven samplings and incubated with the corresponding pooled root water-soluble C of both plant species and glucose-C. After 1 and 9 weeks, a greater net S mineralization (gross mineralization - immobilization) was observed with rape root water-soluble C than with barley root water-soluble C and glucose-C. Conjointly, we found a higher average value of ARS activity in rape rhizosphere than in barley rhizosphere soil. Our findings suggest that plant species, via their rhizodeposition, determine the dynamic of S in soil.  相似文献   

2.
The objective of this work was to determine if the impact of nitrogen (N) on the release of organic carbon (C) into the soil by roots (rhizodeposition) correlated with the effect of this nutrient on some variables of plant growth. Lolium multiflorum Lam. was grown at two levels of N supply, either in sterile sand percolated with nutrient solution or in non-sterile soil. The axenic sand systems allowed continuous quantification of rhizodeposition and accurate analysis of root morphology whilst the soil microcosms allowed the study of 14C labelled C flows in physico-chemical and biological conditions relevant to natural soils. In the axenic sand cultures, enhanced N supply strongly increased the plant biomass, the plant N content and the shoot to root ratio. N supply altered the root morphology by increasing the root surface area and the density of apices, both being significantly positively correlated with the rate of organic C release by plant roots before sampling. This observation is consistent with the production of mucilage by root tips and with mechanisms of root exudation reported previously in the literature, i.e. the passive diffusion of roots solutes along the root with increased rate behind the root apex. We proposed a model of root net exudation, based on the number of root apices and on root soluble C that explained 60% of the variability in the rate of C release from roots at harvest. The effects of N on plant growth were less marked in soil, probably related to the relatively high supply of N from non-fertiliser soil-sources. N fertilization increased the shoot N concentration of the plants and the shoot to root ratio. Increased N supply decreased the partitioning of 14C to roots. In parallel, N fertilisation increased the root soluble 14C and the 14C recovered in the soil per unit of root biomass, suggesting a stimulation of root exudation by N supply. However, due to the high concentration of N in our unfertilised plants, this stimulation was assumed to be very weak because no significant effect of N was observed on the microbial C and on the bacterial abundance in the rhizosphere. Considering the difficulties in evaluating rhizodeposition in non sterile soil, it is suggested that the root soluble C, the root surface area and the root apex density are additional relevant variables that should be useful to measure along with the variables that are commonly determined when investigating how plant functioning impacts on the release of C by roots (i.e soil C, C of the microbial biomass, rhizosphere respiration).  相似文献   

3.
The impacts of global climatic change on belowground ecological processes of terrestrial ecosystems are still not clear. We therefore conducted an experiment in the subalpine coniferous forest ecosystem of the eastern edges of the Tibetan Plateau to study roots of Picea asperata seedlings and rhizosphere soil responses to soil warming and nitrogen availability from April 2007 to December 2008. The seedlings were subjected to two levels of temperature (ambient; infrared heater warming) and two nitrogen levels (0 or 25 g m−2year−1 N). We used a free air temperature increase from an overhead infrared heater to raise both air and soil temperature by 2.1 and 2.6°C, respectively. The results showed that warming alone significantly increased total biomass, coarse root biomass and fine root biomass of P. asperata seedlings. Both total biomass and fine root biomass were increased, but coarse root biomass was significantly decreased by nitrogen fertilization and warming combined with nitrogen fertilization. Warming induced a prominent increase in soil organic carbon (SOC) and NO3 -N of rhizosphere soil, while nitrogen fertilization significantly decreased SOC and NH4 +-N of rhizosphere soil. The warming, fertilization and warming × N fertilization interaction decreased soil microbial C significantly, but substantially increased soil microbial N. These results suggest that nitrogen deposition combined with warmer temperatures under future climatic change possibly will have no effect on fine root production of P. asperata seedlings, but could enhance the nitrification process of their rhizosphere soils in subalpine coniferous forests.  相似文献   

4.
In annual crops, the partitioning of photosynthates to support root growth, respiration and rhizodeposition should be greater during early development than in later reproductive stages due to source/sink relationships in the plant. Therefore, seasonal fluctuations in carbon dioxide (CO2) and nitrous oxide (N2O) production from roots and root-associated soil may be related to resource partitioning by the crop. Greenhouse studies used 13C and 15N stable isotopes to evaluate the carbon (C) partitioning and nitrogen (N) uptake by corn and soybean. We also measured the CO2 and N2O production from planted pots as affected by crop phenology and N fertilization. Specific root-derived respiration was related to the 13C allocated to roots and was greatest during early vegetative growth. Root-derived respiration and rhizodeposition were greater for corn than soybean. The 15N uptake by corn increased between vegetative growth, tasseling and milk stages, but the 15N content in soybean was not affected by phenology. A peak in N2O production was observed with corn at the milk stage, suggesting that the corn rhizosphere supported microbial communities that produced N2O. Most of the 15N-NO3 applied to soybean was not taken up by the plant and negative N2O production during vegetative growth and floral initiation stages suggests that soybean roots supported the reduction of N2O to dinitrogen (N2). We conclude that crop phenology and soil N availability exert important controls on rhizosphere processes, leading to temporal variation in CO2 and N2O production.  相似文献   

5.
Kuzyakov  Y.  Kretzschmar  A.  Stahr  K. 《Plant and Soil》1999,213(1-2):127-136
Carbon rhizodeposition and root respiration during eight development stages of Lolium perenne were studied on a loamy Gleyic Cambisol by 14CO2 pulse labelling of shoots in a two compartment chamber under controlled laboratory conditions. Total 14CO2 efflux from the soil (root respiration, microbial respiration of exudates and dead roots) in the first 8 days after 14C pulse labelling decreased during plant development from 14 to 6.5% of the total 14C input. Root respiration accounted for was between 1.5 and 6.5% while microbial respiration of easily available rhizodeposits and dead root remains were between 2 and 8% of the 14C input. Both respiration processes were found to decline during plant development, but only the decrease in root respiration was significant. The average contribution of root respiration to total 14CO2 efflux from the soil was approximately 41%. Close correlation was found between cumulative 14CO2 efflux from the soil and the time when maximum 14CO2 efflux occurred (r=0.97). The average total of CO2 Defflux from the soil with Lolium perenne was approximately 21 μg C-CO2 d−1 g−1. It increased slightly during plant development. The contribution of plant roots to total CO2 efflux from the soil, calculated as the remainder from respiration of bare soil, was about 51%. The total 14C content after 8 days in the soil with roots ranged from 8.2 to 27.7% of assimilated carbon. This corresponds to an underground carbon transfer by Lolium perenne of 6–10 g C m−2 at the beginning of the growth period and 50–65 g C m−2 towards the end of the growth period. The conventional root washing procedure was found to be inadequate for the determination of total carbon input in the soil because 90% of the young fine roots can be lost. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
To assess the influence of bacteria inoculation on carbon flow through maize plant and rhizosphere,14C allocation after14CO2 application to shoots over a 5-day period was determined. Plants were grown on C- and N-free quartz sand in two-compartment pots, separating root and shoot space. While one treatment remained uninoculated, treatments two and three were inoculated withPantoea agglomerans (D5/23) andPseudomonas fluorescens (Ps I A12), respectively, five days after planting. Bacterial inoculation had profound impacts on carbon distribution within the system. Root/rhizosphere respiration was increased and more carbon was allocated to roots of plants being inoculated. After five days of14CO2 application, more ethanol-soluble substances were found in roots of inoculated treatments and lower rhizodeposition indicated intensive C turnover in the rhizosphere. In both inoculated treatments the intensity of photosynthesis measured as net-CO2-assimilation rates were increased when compared to the uninoculated plants. However, high C turnover in the rhizosphere reduced shoot growth of D5/23 inoculated plants, with no effect on shoot growth of Ps I A12 inoculated plants. A separation of labeled compounds in roots and rhizodeposition revealed that neutral substances (sugars) constituted the largest fraction. The relative fractions of sugars, amino acids and organic acids in roots and rhizodeposition suggest that amino acid exudation was particularly stimulated by bacterial inoculation and that turnover of this substance group is high in the rhizosphere.  相似文献   

7.
The fate of 14C-2,4,6-trinitrotoluene ([U-14C]TNT) in soil/plant systems was studied using onion (Allium cepa L.) plants with only a single root. It was found that the single roots grew exponentially and that the rate of water uptake of the onion plants increased exponentially, as well. The concentration of [U-14C] in the roots at first increased and then appeared to reach a steady state, while the [U-14C] concentration in the leaves was found to increase linearly with time. The [U-14C] concentration in the rhizosphere increased gradually, while in the bulk soil it decreased slowly. The accumulation of [U-14C] in the rhizosphere is likely to difference between movement into the rhizosphere (through advective mass flow of soil water by root uptake) and its uptake into the roots. The distribution of 14C in the soil/plant system was found to be 60–85% in the soil solid phase, 7–11% in the soil liquid phase, <1% in the soil air phase, <1% in the root compartment, and <0.01% in the leaf compartment. The maximum RCF (root concentration factor) value for TNT and its derivates was found to be about 20, and the maximum TSCF (transpiration stream concentration factor) was 0.18. These values can be changed by a variety of factors in soil-plant systems  相似文献   

8.
The loss of organic and inorganic carbon from roots into soil underpins nearly all the major changes that occur in the rhizosphere. In this review we explore the mechanistic basis of organic carbon and nitrogen flow in the rhizosphere. It is clear that C and N flow in the rhizosphere is extremely complex, being highly plant and environment dependent and varying both spatially and temporally along the root. Consequently, the amount and type of rhizodeposits (e.g. exudates, border cells, mucilage) remains highly context specific. This has severely limited our capacity to quantify and model the amount of rhizodeposition in ecosystem processes such as C sequestration and nutrient acquisition. It is now evident that C and N flow at the soil–root interface is bidirectional with C and N being lost from roots and taken up from the soil simultaneously. Here we present four alternative hypotheses to explain why high and low molecular weight organic compounds are actively cycled in the rhizosphere. These include: (1) indirect, fortuitous root exudate recapture as part of the root’s C and N distribution network, (2) direct re-uptake to enhance the plant’s C efficiency and to reduce rhizosphere microbial growth and pathogen attack, (3) direct uptake to recapture organic nutrients released from soil organic matter, and (4) for inter-root and root–microbial signal exchange. Due to severe flaws in the interpretation of commonly used isotopic labelling techniques, there is still great uncertainty surrounding the importance of these individual fluxes in the rhizosphere. Due to the importance of rhizodeposition in regulating ecosystem functioning, it is critical that future research focuses on resolving the quantitative importance of the different C and N fluxes operating in the rhizosphere and the ways in which these vary spatially and temporally.  相似文献   

9.
Ammonium sulphate is a major component of the air pollutants deposited on forests in the Netherlands. Different amounts of NH4 + were added to Douglas-fir seedlings grown in tall containers of sand, to study the influence of high concentrations of NH4 + in the soil on the development of fine roots and the effects of nitrogen uptake on rhizosphere pH. At the end of this eight-month experiment part of the ammonium appeared to have nitrified into nitrate. High doses of ammonium negatively affected root length and root length per unit of dry matter (specific root length). Although Douglas fir shows a preferential ammonium uptake in nutrient solutions the increases in the pH of the rhizosphere in this experiment indicate that nitrogen was mostly taken up as nitrate. When the ammonium concentration in the soil is low, it cannot be taken up readily because of its low mobility in soil. Shoot growth was stimulated by high availability of nitrogen. The possible effects of high doses of ammonium on long-term forest vitality are discussed.  相似文献   

10.
Cover crops increase carbon (C) inputs to agricultural soils, and thus have the potential to mitigate climate change through enhanced soil organic carbon (SOC) storage. However, few studies have explored the fate of belowground C inputs associated with varying root traits into the distinct SOC pools of mineral-associated organic carbon (MAOC) particulate organic carbon (POC). Therefore, a packed 0.5 m column trial was established with 0.25 m topsoil and 0.25 m subsoil with four cover crops species (winter rye, oilseed radish, chicory, and hairy vetch) known to differ in C:N ratio and root morphology. Cover crops were 14CO2-labeled for 3 months, and then, half of the columns were sampled to quantify root and rhizodeposition C. In the remaining columns, plant shoots were harvested and the undisturbed soil and roots were left for incubation. Bulk soil from both sampling times was subjected to a simple fractionation scheme, where 14C in the <50 and >50 μm fraction was assumed to represent MAOC and POC, respectively. The fast-growing rye and radish produced the highest root C. The percentage loss of C via rhizodeposition (%ClvR) showed a distinct pattern, with 22% for the more branched roots (rye and vetch) and 6%–8% for the less branched roots (radish and chicory). This suggests that root morphology plays a key role in determining rhizodeposition C. After 1 year of incubation at room temperature, the remaining MAOC and POC were positively correlated with belowground inputs in absolute terms. However, topsoil MAOC formation efficiencies (cover crop-derived MAOC remaining as a share of belowground inputs) were higher for vetch and rye (21% and 15%, respectively) than for chicory and radish (9% and 10%, respectively), suggesting a greater importance of rhizodeposition (or indirectly, root morphology) than solely substrate C:N ratio for longer term C stabilization.  相似文献   

11.
Effects of above-ground herbivory on short-term plant carbon allocation were studied using maize (Zea mays) and a generalist lubber grasshopper (Romalea guttata). We hypothesized that above-ground herbivory stimulates current net carbon assimilate allocation to below-ground components, such as roots, root exudation and root and soil respiration. Maize plants 24 days old were grazed (c. 25–50% leaf area removed) by caging grasshoppers around individual plants and 18 h later pulse-labelled with14CO2. During the next 8 h,14C assimilates were traced to shoots, roots, root plus soil respiration, root exudates, rhizosphere soil, and bulk soil using carbon-14 techniques. Significant positive relationships were observed between herbivory and carbon allocated to roots, root exudates, and root and soil respiration, and a significant negative relationship between herbivory and carbon allocated to shoots. No relationship was observed between herbivory and14C recovered from soil. While herbivory increased root and soil respiration, the peak time for14CO2 evolved as respiration was not altered, thereby suggesting that herbivory only increases the magnitude of respiration, not patterns of translocation through time. Although there was a trend for lower photosynthetic rates of grazed plants than photosynthetic rates of ungrazed plants, no significant differences were observed among grazed and ungrazed plants. We conclude that above-ground herbivory can increase plant carbon fluxes below ground (roots, root exudates, and rhizosphere respiration), thus increasing resources (e.g., root exudates) available to soil organisms, especially microbial populations.  相似文献   

12.
The chemistry of the lowland rice rhizosphere   总被引:1,自引:1,他引:0  
Kirk  G. J. D.  Begg  C. B. M.  Solivas  J. L. 《Plant and Soil》1993,155(1):83-86
Models and experimental studies of the rhizosphere of rice plants growing in anaerobic soil show that two major processes lead to considerable acidification (1–2 pH units) of the rhizosphere over a wide range of root and soil conditions. One is generation of H+ in the oxidation of ferrous iron by O2 released from the roots. The other is release of H+ from roots to balance excess intake of cations over anions, N being taken up chiefly as NH4 +. CO2 exchange between the roots and soil has a much smaller effect. The zone of root-influence extends a few mm from the root surface. There are substantial differences along the root length and with time. The acidification and oxidation cause increased sorption of NH4 + ions on soil solids, thereby impeding the movement of N to absorbing root surfaces. But they also cause solubilization and enhanced uptake of soil phosphate.  相似文献   

13.
Two 15N labelling methods for assessing net rhizodeposition of nitrogen (N) in pea crop (Pisum sativum L.) were compared in the greenhouse and in the field: the cotton-wick (CW) and the split-root (SR) methods. Rhizodeposition is defined as the organic material lost from roots during their growth through the soil. CW is a method in which 15N urea was supplied to the plant in pulses via a wick threaded through the stem. In SR, the root system was divided between a hydroponic labelling compartment (LC) containing the labelling nutrient solution (1 or 5 mM 15NO315NH4) and a compartment filled with soil in which the amount of 15N rhizodeposition was assessed. The percentage of N derived from rhizodeposition (%Ndfr), was used to calculate the amount of N rhizodeposition which was obtained from the ratio of atom % 15N excess of the soil : atom % 15N excess of the roots. Above ground parts in the field accumulated markedly more dry matter and N than in the greenhouse, regardless of the labelling method. 15N enrichments of above ground parts were higher than those of roots recovered from the soil. Results indicated that amount of 15N applied to plants were lower in SR than in CW. Additionally, LC roots of SR tended to retain large amounts of 15N. As a consequence, atom % 15N excess of roots was less than 1% in SR, whereas most values varied from 1% to 4% in CW. However, relationships between enrichments of the soil and of the roots were different in SR and CW. It was not possible to compare the Ndfr:root-N ratio between the two methods, but the ratio of Ndfr:plant-N was found to be 10% higher in SR than in CW. Finally, relative to total plant-N, the total contribution of below ground parts to the N pool of the soil reached 22–25% at maturity for the two methods. From our experiments, we could not conclude that one method is better than the other for estimating either net rhizodeposition of N or the contribution of a pea plant to the soil N pool. However, CW is easier to adapt and monitor under field conditions than SR.  相似文献   

14.
Atwell  B.J.  Fillery  I. R. P.  McInnes  K. J.  Smucker  A. J. M. 《Plant and Soil》2002,241(2):259-269
Triticum aestivum L. (cv. Gutha), a short-season wheat, was grown to maturity in large monoliths of duplex soil (sand over sandy-clay) in a daylight phytotron mimicking field conditions. Either 15N-labelled ammonium sulphate ((NH4)2SO4) or urea was banded into the soil at a rate of 30 kg N ha–1: even though roots were about 20% heavier when grown in the presence of (NH4)2SO4 for 86 d (P<0.05), above-ground mass was not affected by the source of nitrogen. At four times through crop development up to grain-filling (50, 56, 70 and 86 d after sowing) shoots were labelled heavily with 14CO2 with two purposes. First, to trace `instantaneous' assimilate movement over 24 h, revealing relative sink strengths throughout plants. This, in turn, allowed precise measurements of live root mass and the proportion of recent photoassimilates deposited in the rhizosphere. Although root systems were sparse, even in surface soil layers, they were strong sinks for photoassimilates early in development (0–50 d), supporting the conversion of inorganic applied nitrogen (N) to soil organic forms. In the presence of roots, up to 28% of 15N was immobilised, whereas only 12% of labelled ammonium sulphate was immobilised in unplanted plots in spite of a favourable moisture status in both treatments. The effect of plants on rates of 15N transformation is ascribed to recently imported photoassimilates sustaining rhizosphere metabolism. Not more than 15% of recently fixed carbon imported by roots was recovered from the rhizoplane, suggesting that a highly localised microbial biomass supported vigorous immobilisation of soil N. Thus, more than twice as much applied N was destined for soil organic fractions as for root material. By these processes, root- and soil-immobilised N become substantial stores of applied N and together with shoot N accounted for all the applied N under dryland conditions.  相似文献   

15.
This study focuses on the influence of nitrogen (N) availability and species on rhizodeposition and on decomposition of rhizodeposits, roots and soil organic matter. Four perennial grass species were studied that are characteristic of grassland habitats that differ in nutrient availability. These perennial grass species, Holcus lanatus L., Festuca rubra L., Anthoxanthum odoratum L. and Festuca ovina L., were homogeneously labeled with 14CO2. Plants were grown on soil without N addition and with N addition (14 g N m–2). After 8 weeks, plants were harvested and root production and the remaining amount of rhizodeposits in the soil were measured. 14C-labelled roots were incubated in fresh soil. Decomposition was measured of 1) the labeled rhizodeposits in the soil in which the plants had been growing and 2) the labeled dead roots incubated in fresh soil, by trapping the evolved 14CO2, over 69 days.In general, decomposability of both roots and rhizodeposits increased when nitrogen availability increased. Moreover, the species differed in their response to N. Higher N supply increased total rhizodeposition of H. lanatus and the decomposability of rhizodeposited carbon compounds of this high fertility species was greater than of the low fertility species F. ovina, but lower than of A. odoratum. The presented study gives no evidence for a relation between root decomposition rate and the nutrient availability of the habitat of the four species. Overall, we suggest on the basis of the results that species can affect nutrient cycling by differences in rates of rhizodeposition and litter production. This offers a mechanism whereby species can influence species replacement during succession.  相似文献   

16.
Summary Aerobic and anaerobic N2-fixing bacteria developed in the rhizosphere of barley seedlings and exhibited N2ase activity when seedlings were grown in sterilized sand-nutrient cultures containing low levels of combined nitrogen. The source of the N2-fixing bacteria appeared to be the seed. Average daily rates up to 0.9 μmoles C2H4 h−1 g−1 dry root tissue were measured, but the intensity of the activity was affected by moisture levels and concentration of combined N in the rhizosphere. Removal and washing of the roots did not remove the activity, and roots remained active even after surface-sterilization. An unidentified aerobic N2-fixing bacterium was isolated from the rhizoplane of active barley roots. Inoculation of barley seedlings with the aerobic N2-fixing bacterium enhanced N2ase activity of excised roots 10-fold, with average rates of 0.9, 1.1 and 1.3 μmoles h−1 g−1 dry root assayed under pO2 of 0.01, 0.02 and 0.04 atm respectively. The aerobic N2-fixing bacterium also exhibited N2ase activity when inoculated into the rhizosphere of oat, rice and wheat seedlings. Microscopic observations of sterilized live and stained barley roots suggest that the aerobic N2-fixing bacterium is an endophyte which infects root tissue and metamorphoses into vesicle-like structures.  相似文献   

17.
Partitioning of 14C was assessed in sweet chestnut seedlings (Castanea sativa Mill.) grown in ambient and elevated atmospheric [CO2] environments during two vegetative cycles. The seedlings were exposed to 14CO2 atmosphere in both high and low [CO2] environments for a 6-day pulse period under controlled laboratory conditions. Six days after exposure to 14CO2, the plants were harvested, their dry mass and the radioactivity were evaluated. 14C concentration in plant tissues, root-soil system respiratory outputs and soil residues (rhizodeposition) were measured. Root production and rhizodeposition were increased in plants growing in elevated atmospheric [CO2]. When measuring total respiration, i.e. CO2 released from the root/soil system, it is difficult to separate CO2 originating from roots and that coming from the rhizospheric microflora. For this reason a model accounting for kinetics of exudate mineralization was used to estimate respiration of rhizospheric microflora and roots separately. Root activity (respiration and exudation) was increased at the higher atmospheric CO2 concentration. The proportion attributed to root respiration accounted for 70 to 90% of the total respiration. Microbial respiration was related to the amount of organic carbon available in the rhizosphere and showed a seasonal variation dependent upon the balance of root exudation and respiration. The increased carbon assimilated by plants grown under elevated atmospheric [CO2] stayed equally distributed between these increased root activities. ei]H Lambers  相似文献   

18.
Summary Relationships between root zone temperature, concentrations and uptake rates of NH 4 + and NO 3 were studied in non-mycorrhizal roots of 4-year-old Norway spruce under controlled environmental conditions. Additionally, in a forest stand NH 4 + and NO 3 uptake rates along the root axis and changes in the rhizosphere pH were measured. In the concentration (Cmin) range of 100–150 M uptake rates of NH 4 + were 3–4 times higher than those of NO 3 The preference for NH 4 + uptake was also reflected in the minimum concentration (Cmin) values. Supplying NH4NO3, the rate of NO 3 uptake was very low until the NH 4 + concentrations had fallen below about 100 M. The shift from NH 4 + to NO 3 uptake was correlated with a corresponding shift from net H+ production to net H+ consumption in the external solution. The uptake rates of NH 4 + were correlated with equimolar net production of H+. With NO 3 nutrition net consumption of H+ was approximately twice as high as uptake rates of NO 3 In the forest stand the NO 3 concentration in the soil solution was more than 10 times higher than the NH 4 + concentration (<100 M), and the rhizosphere pH of non-mycorrhizal roots considerably higher than the bulk soil pH. The rhizosphere pH increase was particularly evident in apical root zones where the rates of water and NO 3 uptake and nitrate reductase activity were also higher. The results are summarized in a model of water and nutrient transport to, and uptake by, non-mycorrhizal roots of Norway spruce in a forest stand. Model calculations indicate that delivery to the roots by mass flow may meet most of the plant demand of nitrogen and calcium, and that non-mycorrhizal root tips have the potential to take up most of the delivered nitrate and calcium.  相似文献   

19.
The mass transfer from root to soil by means of rhizodeposition has been studied in grasses and forest trees, but its role in fruit trees is still unknown. In this study, N fluxes from roots to soil were estimated by applying a 15N mass balance technique to the soil–tree system. Apple (Malus domestica) trees were pre-labelled with 15N and then grown outdoors in 40 L pots for one vegetative season in (1) a coarse-textured, low organic matter soil, (2) a coarse-textured, high organic matter soil, and (3) a fine-textured, high organic matter soil. At tree harvest the 15N abundance of the soils was higher than at transplanting, but the total amount of 15N present in the tree–soil system was similar at transplanting and tree harvest. The soils had a strong effect on N fluxes from and to the soil. In the fine-textured soil, 11% of the total plant-derived nitrogen was transferred to the soil, compared with 2–5% in the two coarse-textured soils. Rhizodeposition was higher in the fine soil (18% of the primary production) than in the coarse-textured soils, whereas higher soil organic matter depressed rhizodeposition. Nitrogen uptake was almost double in the coarse-textured, high organic matter soil versus the other soils. Our results indicate that belowground primary productivity is significantly underestimated if based on root production data only. Rhizodeposition represents a major process, whose role should not be underestimated in carbon and nitrogen cycles in orchard ecosystems.  相似文献   

20.
Release of large amounts of citric acid from specialized root clusters (proteoid roots) of phosphorus (P)-deficient white lupin (Lupinus albus L.) is an efficient strategy for chemical mobilization of sparingly available P sources in the rhizosphere. The present study demonstrates that increased accumulation and exudation of citric acid and a concomitant release of protons were predominantly restricted to mature root clusters in the later stages of P deficiency. Inhibition of citrate exudation by exogenous application of anion-channel blockers such as ethacrynic- and anthracene-9-carboxylic acids may indicate involvement of an anion channel. Phosphorus-deficiency-induced accumulation and subsequent exudation of citric acid seem to be a consequence of both increased biosynthesis and reduced metabolization of citric acid in the proteoid root tissue, indicated by increased in-vitro activity and enzyme protein levels of phosphoenolpyruvate carboxylase (EC 4.1.1.31), and reduced activity of aconitase (EC 4.2.1.3) and root respiration. Similar to citric acid, acid phosphatase, which is secreted by roots and involved in the mobilization of the organic soil P fraction, was released predominantly from proteoid roots of P-deficient plants. Also 33Pi uptake per unit root fresh-weight was increased by approximately 50% in juvenile and mature proteoid root clusters compared to apical segments of non-proteoid roots. Kinetic studies revealed a K m of 30.7 μM for Pi uptake of non-proteoid root apices in P-sufficient plants, versus K m values of 8.5–8.6 μM for non-proteoid and juvenile proteoid roots under P-deficient conditions, suggesting the induction of a high-affinity Pi-uptake system. Obviously, P-deficiency-induced adaptations of white lupin, involved in P acquisition and mobilization of sparingly available P sources, are predominantly confined to proteoid roots, and moreover to distinct stages during proteoid root development. Received: 10 September 1998 / Accepted: 22 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号