首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intracerebral inoculation with mouse hepatitis virus strain A59 results in viral replication in the CNS and liver. To investigate whether B cells are important for controlling mouse hepatitis virus strain A59 infection, we infected muMT mice who lack membrane-bound IgM and therefore mature B lymphocytes. Infectious virus peaked and was cleared from the livers of muMT and wild-type mice. However, while virus was cleared from the CNS of wild-type mice, virus persisted in the CNS of muMT mice. To determine how B cells mediate viral clearance, we first assessed CD4(+) T cell activation in the absence of B cells as APC. CD4(+) T cells express wild-type levels of CD69 after infection in muMT mice. IFN-gamma production in response to viral Ag in muMT mice was also normal during acute infection, but was decreased 31 days postinfection compared with that in wild-type mice. The role of Ab in viral clearance was also assessed. In wild-type mice plasma cells appeared in the CNS around the time that virus is cleared. The muMT mice that received A59-specific Ab had decreased virus, while mice with B cells deficient in Ab secretion did not clear virus from the CNS. Viral persistence was not detected in FcR or complement knockout mice. These data suggest that clearance of infectious mouse hepatitis virus strain A59 from the CNS requires Ab production and perhaps B cell support of T cells; however, virus is cleared from the liver without the involvement of Abs or B cells.  相似文献   

2.
Intranasal inoculation of the neuroattenuated OBLV60 strain of mouse hepatitis virus results in infection of mitral neurons in the olfactory bulb, followed by spread along olfactory and limbic pathways to the brain. Immunocompetent BALB/c mice were able to clear virus by 11 days postinfection (p.i.). Gamma interferon (IFN-gamma) may play a role in clearance of OBLV60 from infected immunocompetent BALB/c mice through a nonlytic mechanism. Among the variety of immunomodulatory activities of IFN-gamma is the induction of expression of inducible nitric oxide synthase (iNOS), an enzyme responsible for the production of nitric oxide (NO). Studies were undertaken to investigate the role of IFN-gamma and NO in host defense and clearance of OBLV60 from the central nervous system (CNS). Exposure of OBLV60-infected OBL21a cells, a mouse neuronal cell line, to the NO-generating compound S-nitroso-L-acetyl penicillamine resulted in a significant decrease in viral replication, indicating that NO interfered with viral replication. Furthermore, infection of IFN-gamma knockout (GKO) mice and athymic nude mice with OBLV60 resulted in low-level expression of iNOS mRNA and protein in the brains compared to that of OBLV60-infected BALB/c mice. Nude mice were unable to clear virus and eventually died between days 11 and 14 p.i. (B. D. Pearce, M. V. Hobbs, T. S. McGraw, and M. J. Buchmeier, J. Virol. 68:5483-5495, 1994); however, GKO mice survived infection and cleared virus by day 18 p.i. These data suggest that IFN-gamma production in the olfactory bulb contributed to but may not be essential for clearance of OBLV60 from the brain. In addition, treatment of OBLV60-infected BALB/c mice with aminoguanidine, a selective inhibitor of iNOS activity, did not result in any increase in mortality, and the mice cleared the virus by 11 days p.i. These data suggest that although NO was able to block replication of virus in vitro, expression of iNOS with NO release in vivo did not appear to be the determinant factor in clearance of OBLV60 from CNS neurons.  相似文献   

3.
CD8(+) T cells are required to control acute viral replication in the CNS following infection with neurotropic coronavirus. By contrast, studies in B cell-deficient (muMT) mice revealed Abs as key effectors in suppressing virus recrudescence. The apparent loss of initial T cell-mediated immune control in the absence of B cells was investigated by comparing T cell populations in CNS mononuclear cells from infected muMT and wild-type mice. Following viral recrudescence in muMT mice, total CD8(+) T cell numbers were similar to those of wild-type mice that had cleared infectious virus; however, virus-specific T cells were reduced at least 3-fold by class I tetramer and IFN-gamma ELISPOT analysis. Although overall T cell recruitment into the CNS of muMT mice was not impaired, discrepancies in frequencies of virus-specific CD8(+) T cells were most severe during acute infection. Impaired ex vivo cytolytic activity of muMT CNS mononuclear cells, concomitant with reduced frequencies, implicated IFN-gamma as the primary anti viral factor early in infection. Reduced virus-specific CD8(+) T cell responses in the CNS coincided with poor peripheral expansion and diminished CD4(+) T cell help. Thus, in addition to the lack of Ab, limited CD8(+) and CD4(+) T cell responses in muMT mice contribute to the ultimate loss of control of CNS infection. Using a model of virus infection restricted to the CNS, the results provide novel evidence for a role of B cells in regulating T cell expansion and differentiation into effector cells.  相似文献   

4.
Viral encephalitis caused by neuroadapted yellow fever 17D virus (PYF) was studied in parental and gamma interferon (IFN-gamma)-deficient (IFN-gamma knockout [GKO]) C57BL/6 mice. The T-cell responses which enter the brain during acute fatal encephalitis of nonimmunized mice, as well as nonfatal encephalitis of immunized mice, were characterized for relative proportions of CD4+ and CD8+ cells, their proliferative responses, and antigen-specific expression of cytokines during stimulation in vitro. Unimmunized mice accumulated only low levels of T cells within the brain during fatal disease, whereas the brains of immunized mice contained higher levels of both T-cell subsets in response to challenge, with CD8+ cells increased relative to the CD4+ subset. The presence of T cells correlated with the time at which virus was cleared from the central nervous system in both parental and GKO mice. Lymphocytes isolated from the brains of challenged immunized mice failed to proliferate in vitro in response to T-cell mitogens or viral antigens; however, IFN-gamma, interleukin 4 (IL-4), and, to a lesser extent, IL-2 were detectable after stimulation. The levels of IFN-gamma, but not IL-2 or IL-4, were augmented in response to viral antigen, and this specificity was detectable in the CD4+ compartment. When tested for the ability to survive both immunization and challenge with PYF virus, GKO and CD8 knockout mice did not differ from parental mice (80 to 85% survival), although GKO mice exhibited a defect in virus clearance. In contrast, CD4 knockout and Igh-6 mice were unable to resist challenge. The data implicate antibody in conjunction with CD4+ lymphocytes bearing a Th1 phenotype as the critical factors involved in virus clearance in this model.  相似文献   

5.
CD8(+) T cells infiltrating the CNS control infection by the neurotropic JHM strain of mouse hepatitis virus. Differential susceptibility of infected cell types to clearance by perforin or IFN-gamma uncovered distinct, nonredundant roles for these antiviral mechanisms. To separately evaluate each effector function specifically in the context of CD8(+) T cells, pathogenesis was analyzed in mice deficient in both perforin and IFN-gamma (PKO/GKO) or selectively reconstituted for each function by transfer of CD8(+) T cells. Untreated PKO/GKO mice were unable to control the infection and died of lethal encephalomyelitis within 16 days, despite substantially higher CD8(+) T cell accumulation in the CNS compared with controls. Uncontrolled infection was associated with limited MHC class I up-regulation and an absence of class II expression on microglia, coinciding with decreased CD4(+) T cells in CNS infiltrates. CD8(+) T cells from perforin-deficient and wild-type donors reduced virus replication in PKO/GKO recipients. By contrast, IFN-gamma-deficient donor CD8(+) T cells did not affect virus replication. The inability of perforin-mediated mechanisms to control virus in the absence of IFN-gamma coincided with reduced class I expression. These data not only confirm direct antiviral activity of IFN-gamma within the CNS but also demonstrate IFN-gamma-dependent MHC surface expression to guarantee local T cell effector function in tissues inherently low in MHC expression. The data further imply that IFN-gamma plays a crucial role in pathogenesis by regulating the balance between virus replication in oligodendrocytes, CD8(+) T cell effector function, and demyelination.  相似文献   

6.
M L Barkon  B L Haller    H W Virgin  th 《Journal of virology》1996,70(2):1109-1116
Reoviruses are encapsidated double-stranded RNA viruses that cause systemic disease in mice after peroral (p.o.) inoculation and primary replication in the intestine. In this study, we define components of the immune system involved in the clearing of reovirus from the proximal small intestine. The intestines of immunocompetent adult CB17, 129, and C57BL/6 mice were cleared of reovirus serotype 3 clone 9 (T3C9) within 7 days of p.o. inoculation. Antigen-specific lymphocytes were important for the clearance of intestinal infection, since severe combined immunodeficient (SCID) mice failed to clear T3C9 infection. To define specific immune components required for intestinal clearance, reovirus infection of mice with null mutations in the immunoglobulin M (IgM) transmembrane exon (MuMT; B cell and antibody deficient) or beta 2 microglobulin gene (beta 2-/-; CD8 deficient) was evaluated. beta 2-/- mice cleared reovirus infection with normal kinetics, while MuMT mice showed delayed clearance of T3C9 7 to 11 days after p.o. inoculation. Adoptive transfer of splenic lymphocytes from reovirus-immune CB17 mice inhibited growth of T3C9 in CB17 SCID mouse intestine 11 days after p.o. inoculation. The efficiency of viral clearance by adoptively transferred cells was significantly diminished by depletion of B cells prior to adoptive transfer. Results in SCID and MuMT mice demonstrate an important role for B cells or IgG in clearance of reovirus from the intestines. Polyclonal reovirus-immune rabbit serum, protein A-purified immune IgG, and murine monoclonal IgG2a antibody specific for reovirus outer capsid protein sigma 3 administered intraperitoneally all normalized clearance of reovirus from intestinal tissue in MuMT mice. This result demonstrates an IgA-independent role for IgG in the clearance of intestinal virus infection. Polyclonal reovirus-immune serum also significantly decreased reovirus titers in the intestines of SCID mice, demonstrating a T-cell-independent role for antibody in the clearance of intestinal reovirus infection. B cells and circulating IgG play an important role in the clearance of reovirus from intestines, suggesting that IgG may play a more prominent functional role at mucosal sites of primary viral replication than was previously supposed.  相似文献   

7.
IFN-gamma is the primary mediator of anti-parasite effector mechanisms against Toxoplasma gondii. After intraperitoneal infection with the Fukaya strain of T. gondii, unirradiated IFN-gamma knock-out (GKO) mice transferred with wild type (WT) CD8+ effector T cells from infected mice failed to induce the production of IFN-gamma and died, whereas irradiated (IR) GKO mice transferred with WT CD8+ T cells induced IFN-y production and survived more than 6 months. IR GKO mice transferred with WT CD8+ T cells together with GKO B-2 cells died 8 days after infection, whereas those transferred with WT CD8+ T cells together with B-la or T cells survived. B-2 cells of infected GKO mice activated CD11b+ cells for IL-4 production, and down-regulated NO release, STAT1 phosphorylation, and interferon regulatory factor-1 expression in the peritoneal exudates cells of IR GKO mice transferred with WT CD8+ T cells together with GKO B-2 cells after infection. Thus, B-2 cells in T. gondii-infected mice act as suppressor cells in the host defense of infected mice.  相似文献   

8.
Infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus produces acute and chronic demyelination. The contributions of perforin-mediated cytolysis and gamma interferon (IFN-gamma) secretion by CD8(+) T cells to the control of infection and the induction of demyelination were examined by adoptive transfer into infected SCID recipients. Untreated SCID mice exhibited uncontrolled virus replication in all CNS cell types but had little or no demyelination. Memory CD8(+) T cells from syngeneic wild-type (wt), perforin-deficient, or IFN-gamma-deficient (GKO) donors all trafficked into the infected CNS in the absence of CD4(+) T cells and localized to similar areas. Although CD8(+) T cells from all three donors suppressed virus replication in the CNS, GKO CD8(+) T cells expressed the least antiviral activity. A distinct viral antigen distribution in specific CNS cell types revealed different mechanisms of viral control. While wt CD8(+) T cells inhibited virus replication in all CNS cell types, cytolytic activity in the absence of IFN-gamma suppressed the infection of astrocytes, but not oligodendroglia. In contrast, cells that secreted IFN-gamma but lacked cytolytic activity inhibited replication in oligodendroglia, but not astrocytes. Demyelination was most severe following viral control by wt CD8(+) T cells but was independent of macrophage infiltration. These data demonstrate the effective control of virus replication by CD8(+) T cells in the absence of CD4(+) T cells and support the necessity for the expression of distinct effector mechanisms in the control of viral replication in distinct CNS glial cell types.  相似文献   

9.
CD8+ cytotoxic T (Tc) lymphocytes mediate recovery from vaccinia virus (VV) infection. In mice, anti-VV Tc cells are detectable on or after day 3 after infection, and cytolytic activity peaks between days 5 and 6. A rVV encoding murine IL-2, VV-hemagglutinin (HA)-IL-2, was cleared more rapidly, compared with a control rVV, VV-HA-thymidine kinase (TK), from tissues of infected euthymic normal mice. The mechanism of VV-HA-IL-2 clearance was operative early in infection and correlated with an elevated NK cell response, before the induction of anti-VV Tc cell response. We have investigated the roles of NK cells, T cells, and IFN-gamma in the rapid clearance of VV-HA-IL-2, by using specific mAb. Depletion of NK cells with mAb significantly enhanced VV-HA-IL-2 but not VV-HA-TK titers 3 days after infection. NK cells alone could not account for rapid viral clearance, because VV-HA-IL-2 titers in NK cell-depleted mice were not comparable to VV-HA-TK titers. Treatment with a mAb to IFN-gamma completely abrogated the IL-2-induced mechanism(s) of VV-HA-IL-2 clearance, and titers of the IL-2-encoding virus were comparable to control virus titers. In addition, the elimination of CD4+ but not CD8+ T cells resulted in significant increases in VV-HA-IL-2 titers.  相似文献   

10.
Infection of susceptible strains of mice with Daniel's (DA) strains of Theiler's murine encephalomyelitis virus (DAV) results in virus persistence in the central nervous system (CNS) white matter and chronic demyelination similar to that observed in multiple sclerosis. We investigated whether persistence is due to the immune system more efficiently clearing DAV from gray than from white matter of the CNS. Severe combined immunodeficient (SCID) and immunocompetent C.B-17 mice were infected with DAV to determine the kinetics, temporal distribution, and tropism of the virus in CNS. In early disease (6 h to 7 days postinfection), DAV replicated with similar kinetics in the brains and spinal cords of SCID and immunocompetent mice and in gray and white matter. DAV RNA was localized within 48 h in CNS cells of all phenotypes, including neurons, oligodendrocytes, astrocytes, and macrophages/microglia. In late disease (13 to 17 days postinfection), SCID mice became moribund and permitted higher DAV replication in both gray and white matter. In contrast, immunocompetent mice cleared virus from the gray matter but showed replication in the white matter of their brains and spinal cords. Reconstitution of SCID mice with nonimmune splenocytes or anti-DAV antibodies after establishment of infection demonstrated that both cellular and humoral immune responses decreased virus from the gray matter; however, the cellular responses were more effective. SCID mice reconstituted with splenocytes depleted of CD4+ or CD8+ T lymphocytes cleared virus from the gray matter but allowed replication in the white matter. These studies demonstrate that both neurons and glia are infected early following DAV infection but that virus persistence in the white matter is due to preferential clearance of virus from the gray matter by the immune system.  相似文献   

11.
Observation of chronic inflammatory cells and associated high-level gamma interferon (IFN-gamma) production in ganglia during herpes simplex type 1 (HSV-1) latent infection in mice (E. M. Cantin, D. R. Hinton, J. Chen, and H. Openshaw, J. Virol. 69:4898-4905, 1995) prompted studies to determine a role of IFN-gamma in maintaining latency. Mice lacking IFN-gamma (GKO mice) or the IFN-gamma receptor (RGKO mice) were inoculated with HSV-1, and the course of the infection was compared with that in IFN-gamma-competent mice with the same genetic background (129/Sv//Ev mice). A time course study showed no significant difference in trigeminal ganglionic viral titers or the timing of establishment of latency. Spontaneous reactivation resulting in infectious virus in the ganglion did not occur during latency in any of the mice. However, 24 h after the application of hyperthermic stress to mice, HSV-1 antigens were detected in multiple neurons in the null mutant mice but in only a single neuron in the 129/Sv//Ev control mice. Mononuclear inflammatory cells clustered tightly around these reactivating neurons, and by 48 h, immunostaining was present in satellite cells as well. The incidence of hyperthermia-induced reactivation as determined by recovery of infectious virus from ganglia was significantly higher in the null mutant than in control mice: 11% in 129/Sv//Ev controls, 50% in GKO mice (P = 0.0002), and 33% in RGKO mice (P = 0.03). We concluded that IFN-gamma is not involved in the induction of reactivation but rather contributes to rapid suppression of HSV once it is reactivated.  相似文献   

12.
Single Ag-specific CD8+ T cells from IFN-gamma-deficient (GKO) or perforin-deficient (PKO) mice provide substantial immunity against murine infection with Listeria monocytogenes. To address the potential for redundancy between perforin and IFN-gamma as CD8+ T cell effector mechanisms, we generated perforin/IFN-gamma (PKO/GKO) double-deficient mice. PKO/GKO-derived CD8+ T cells specific for the immunodominant listeriolysin O (LLO91-99) epitope provide immunity to LM infection similar to that provided by Ag-matched wild-type (WT) CD8+ T cells in the liver but reduced in the spleen. Strikingly, polyclonal CD8+ T cells from immunized PKO/GKO mice were approximately 100-fold more potent in reducing bacterial numbers than the same number of polyclonal CD8+ T cells from immunized WT mice. This result is probably quantitative, because the frequency of the CD8+ T cell response against the immunodominant LLO91-99 epitope is >4.5-fold higher in PKO/GKO mice than WT mice at 7 days after identical immunizations. Moreover, PKO/GKO mice can be immunized by a single infection with attenuated Listeria to resist >80,000-fold higher challenges with virulent organisms than naive PKO/GKO mice. These data demonstrate that neither perforin nor IFN-gamma is required for the development or expression of adaptive immunity to LM. In addition, the results suggest the potential for perforin and IFN-gamma to regulate the magnitude of the CD8+ T cell response to infection.  相似文献   

13.
14.
Sarcocystis neurona is an apicomplexan parasite that is the primary etiologic agent of equine protozoal myeloencephalitis in horses. Protective immune responses in horses have not been determined, but interferon-gamma (IFN-gamma) is considered critical for protection from neurologic disease in mice. The role of adaptive and innate immune responses in control of parasites was explored by infecting BALB/c, IFN-gamma knockout (GKO), and severe combined immune deficient (SCID) mice with S. neurona (10(4) sporocysts/mouse). Immune competent BALB/c mice eliminated parasites within 30 days, with no sign of neurologic disease, whereas GKO mice developed fulminant neurologic disease. In contrast, SCID mice remained healthy throughout the experimental period despite the persistence of parasite at low levels in some mice. Treatment with anti-IFN-gamma antibody resulted in neurologic disease in infected SCID mice. Although SCID mice lack adaptive immune responses, they have natural killer (NK) cells capable of producing significant quantities of IFN-gamma. Therefore, SCID mice were infected with sporocysts of S. neurona and treated with anti-asialo GM1. Depletion of NK cells, confirmed by flow cytometry, did not result in neurologic disease in SCID mice. These results indicate that IFN-gamma mediates protection from neurologic disease in SCID mice. Protective levels of IFN-gamma may originate from a low number of nondepleted NK cells or from a non-T cell, non-NK cell population.  相似文献   

15.
Human CMV infection of the neonatal CNS results in long-term neurologic sequelae. To define the pathogenesis of fetal human CMV CNS infections, we investigated mechanisms of virus clearance from the CNS of neonatal BALB/c mice infected with murine CMV (MCMV). Virus titers peaked in the CNS between postnatal days 10-14 and infectious virus was undetectable by postnatal day 21. Congruent with virus clearance was the recruitment of CD8(+) T cells into the CNS. Depletion of CD8(+) T cells resulted in death by postnatal day 15 in MCMV-infected animals and increased viral loads in the liver, spleen, and the CNS, suggesting an important role for these cells in the control of MCMV replication in the newborn brain. Examination of brain mononuclear cells revealed that CD8(+) T cell infiltrates expressed high levels of CD69, CD44, and CD49d. IE1(168)-specific CD8(+) T cells accumulated in the CNS and produced IFN-gamma and TNF-alpha but not IL-2 following peptide stimulation. Moreover, adoptive transfer of brain mononuclear cells resulted in decreased virus burden in immunodepleted MCMV-infected syngeneic mice. Depletion of the CD8(+) cell population following transfer eliminated control of virus replication. In summary, these results show that functionally mature virus-specific CD8(+) T cells are recruited to the CNS in mice infected with MCMV as neonates.  相似文献   

16.
Toxoplasma gondii infection is generally asymptomatic in immunocompetent persons but can be life-threatening in immunocompromised persons and for fetuses in the case of maternal-fetal transmission. The effect of interferon (IFN)-gamma, which plays a crucial role in the protective immunity against T. gondii infection, on maternal-fetal transmission of T. gondii was analyzed by quantitative competitive polymerase chain reaction targeting T. gondii-specific SAG1 gene. T. gondii loads were obvious in uterus and placenta of wild type (WT) C57BL/6 (B6, susceptible strain) but not BALB/c (resistant strain) pregnant mice. Higher levels of T. gondii were detected in uterus and placenta of IFN-gamma knock-out (GKO) B6 and BALB/c than in those of WT mice. Furthermore, T. gondii was detected in fetus of GKO B6 but not GKO BALB/c, WT B6, or WT BALB/c mice. Thus, not only IFN-gamma but also genetic susceptibility to T. gondii infection was important for the protective immunity of maternal-fetal transmission of T. gondii to fetus via placenta. T. gondii-infected WT mice displayed a low delivery rate with high IFN-gamma production, whereas infected GKO mice did not. Additionally, mean body weight of neonates from T. gondii-infected GKO BALB/c pregnant mice was significantly lower than that of unaborted neonates from WT BALB/c pregnant mice, suggesting the effects of T. gondii infection on intrauterine growth retardation of fetus in pregnant GKO mice.  相似文献   

17.
Murine models of gamma interferon (IFN-gamma) deficiency demonstrate the role of this cytokine in attenuating acute herpes simplex virus (HSV) disease; however, the effect of IFN-gamma on the establishment and maintenance of neuronal latency and viral reactivation is not known. Using the IFN-gamma knockout (GKO) model of IFN-gamma deficiency and sensitive quantitative PCR methods, we show that IFN-gamma significantly reduces the ganglion content of latent HSV-1 in BALB/c mice, which in turn delays viral time to reactivation following UV irradiation. Similar effects were not seen in the C57BL/6 strain. These results indicate that IFN-gamma significantly attenuates latent HSV infection in the mouse model of ocular infection but has no impact on the maintenance of latency or virus reactivation.  相似文献   

18.
Metcalf TU  Griffin DE 《Journal of virology》2011,85(21):11490-11501
Sindbis virus (SINV) infection of the central nervous system (CNS) provides a model for understanding the role of the immune response in recovery from alphavirus infection of neurons. Virus clearance occurred in three phases: clearance of infectious virus (days 3 to 7), clearance of viral RNA (days 8 to 60), and maintenance of low levels of viral RNA (>day 60). The antiviral immune response was initiated in the cervical lymph nodes with rapid extrafollicular production of plasmablasts secreting IgM, followed by germinal center production of IgG-secreting and memory B cells. The earliest inflammatory cells to enter the brain were CD8(+) T cells, followed by CD4(+) T cells and CD19(+) B cells. During the clearance of infectious virus, effector lymphocytes in the CNS were primarily CD8(+) T cells and IgM antibody-secreting cells (ASCs). During the clearance of viral RNA, there were more CD4(+) than CD8(+) T cells, and B cells included IgG and IgA ASCs. At late times after infection, ASCs in the CNS were primarily CD19(+) CD38(+) CD138(-) Blimp-1(+) plasmablasts, with few fully differentiated CD38(-) CD138(+) Blimp-1(+) plasma cells. CD19(+) CD38(+) surface Ig(+) memory B cells were also present. The level of antibody to SINV increased in the brain over time, and the proportion of SINV-specific ASCs increased from 15% of total ASCs at day 14 to 90% at 4 to 6 months, suggesting specific retention in the CNS during viral RNA persistence. B cells in the CNS continued to differentiate, as evidenced by accumulation of IgA ASCs not present in peripheral lymphoid tissue and downregulation of major histocompatibility complex (MHC) class II expression on plasmablasts. However, there was no evidence of germinal center activity or IgG avidity maturation within the CNS.  相似文献   

19.
Gender influences the incidence and severity of some bacterial and viral infections and autoimmune diseases in animal models and humans. To determine a gender-based difference, comparisons were made between male and female mice inoculated with herpes simplex virus type 1 (HSV-1) by the corneal route. Mortality was higher in the male mice of the three strains tested: 129/Sv//Ev wild type, gamma interferon (IFN-gamma) knockout (GKO), and IFN-gamma receptor knockout (RGKO). Similarly, in vivo HSV-1 reactivation occurred more commonly in male mice, but the male-female difference in reactivation was restricted to the two knockout strains and was not seen in the 129/Sv//Ev control. Comparison among male mice of the three strains showed a higher mortality of the RGKO mice and a higher reactivation rate of the GKO and RGKO mice than of the 129/Sv//Ev males. In contrast, female RGKO and GKO mice did not differ from female 129/Sv//Ev controls in either mortality or reactivation. HSV-1 periocular and eyelid disease was also more severe in male and dihydrotestosterone (DHT)-treated female mice than in control female mice. These results show a consistent gender difference in HSV-1 infection, with a worse outcome in male mice. In addition, the results comparing GKO and RGKO mice to controls show differences only in male mice, suggesting that some effects of IFN-gamma, a key immunoregulatory molecule, are gender specific.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号