首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct relationship between the aging process and the incidence and prevalence of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) implies that certain risk factors associated with the development of both diseases increase with the aging process. In particular, both diseases share an overly proliferative phenotype, suggesting that mechanisms that normally act to suppress cellular proliferation are disrupted or rendered dysfunctional as a consequence of the aging process. We propose that one such mechanism involves changes in the prostate microenvironment, which 'evolves' during the aging process and disrupts paracrine interactions between epithelial and associated stromal fibroblasts. We show that stromal fibroblasts isolated from the prostates of men 63-81 years of age at the time of surgery express and secrete higher levels of the CXCL12 chemokine compared with those isolated from younger men, and stimulate CXCR4-mediated signaling pathways that induce cellular proliferation. These studies represent an important first step towards a mechanistic elucidation of the role of aging in the etiology of benign and malignant prostatic diseases.  相似文献   

2.
3.
Recipient airway epithelial cells are found in human sex-mismatched lung transplants, implying that circulating progenitor epithelial cells contribute to the repair of the airway epithelium. Markers of circulating progenitor epithelial cells and mechanisms for their trafficking remain to be elucidated. We demonstrate that a population of progenitor epithelial cells exists in the bone marrow and the circulation of mice that is positive for the early epithelial marker cytokeratin 5 (CK5) and the chemokine receptor CXCR4. We used a mouse model of sex-mismatched tracheal transplantation and found that CK5+ circulating progenitor epithelial cells contribute to re-epithelialization of the airway and re-establishment of the pseudostratified epithelium. The presence of CXCL12 in tracheal transplants provided a mechanism for CXCR4+ circulating progenitor epithelial cell recruitment to the airway. Depletion of CXCL12 resulted in the epithelium defaulting to squamous metaplasia, which was derived solely from the resident tissue progenitor epithelial cells. Our findings demonstrate that CK5+CXCR4+ cells are markers of circulating progenitor epithelial cells in the bone marrow and circulation and that CXCR4/CXCL12-mediated recruitment of circulating progenitor epithelial cells is necessary for the re-establishment of a normal pseudostratified epithelium after airway injury. These findings support a novel paradigm for the development of squamous metaplasia of the airway epithelium and for developing therapeutic strategies for circulating progenitor epithelial cells in airway diseases.  相似文献   

4.
Chronic or recurrent inflammation plays a role in the development of many types of cancer including prostate cancer. CXCL10 (interferon-gamma inducible protein-10, IP-10) is a small secretory protein of 8.7 kDa. Recently, it has been shown that normal prostate epithelial (PZ-HPV-7) cells produce lower amounts of angiogenic CXC chemokines (GRO-alpha, IL-8) and higher amounts of angiostatic chemokines (CXCL10, CXCL11) as compared to prostate cancer cells (CA-HPV-10 and PC-3). Accordingly, we studied the effects of overexpression of CXCL10 in human prostate cancer LNCaP cells. LNCaP cells were transiently transfected with CXCL10 cDNA in pIRES2-EGFP vector. CXCL10, CXCR3, PSA and G3PDH mRNA levels were determined by semi-quantitative conventional and quantitative real-time RT-PCR and fluorescence-activated cell sorting (FACS). The expression of CXCL10 was markedly enhanced in the transfected cells at mRNA and protein levels in the cells. Overexpression of CXCL10 inhibited cell proliferation of the transfected cells by 30%-40% in serum-limited medium (1% FCS in RPMI1640 medium) and decreased PSA production. CXCR3 expression was significantly induced by the overexpression of CXCL10 as determined by RT-PCR and FACS. These results indicated that CXCL10 inhibited LNCaP cell proliferation and decreased PSA production by up-regulation of CXCR3 receptor. CXCL10 may be potentially useful in the treatment of prostate cancer.  相似文献   

5.
BACKGROUND: CXCL8 (previously known as Interleukin-8), a member of the alpha-chemokine family of chemotactic cytokines, stimulates intestinal neutrophil activation and chemotaxis. As intestinal epithelial cells have been recently shown to produce CXCL8, the aim of this study was to identify functional activities of CXCL8 on intestinal epithelial cells. METHODS: The expression of CXCL8 receptors CXCR1 and CXCR2 was assessed by RT-PCR and FACS analysis in human Caco-2 and HT-29 cells. The effects of CXCL8 on intestinal epithelial proliferation were assessed with colorimetric MTT assays and the effects on epithelial restitution with an in vitro migration model using Caco-2 and HT-29 cells. RESULTS: While the expression of both CXCR1 mRNA and protein could be demonstrated by RT-PCR and FACS analysis in human Caco-2 and HT-29 cells, no expression of CXCR2 was observed in these cell lines. Colorimetric MTT assays revealed that CXCL8 does not modulate cell proliferation in HT-29 and Caco-2 cells. In contrast, CXCL8 significantly enhanced intestinal epithelial migration in an in vitro migration model of HT-29 and Caco-2 cells. Enhancement of intestinal epithelial cell migration by CXCL8 was partially CXCR1-dependent and TGFbeta-independent. CONCLUSION: CXCL8 exerts functional effects on intestinal epithelial cells that may be relevant for intestinal inflammation and mucosal healing.  相似文献   

6.
Acute respiratory syncytial virus (RSV) infection causes airway inflammation and exacerbates asthma, but the mechanism of inflammation is poorly understood. The role of the STAT-signaling pathway in RSV infection in epithelial cells was examined in this study. DNA microarray analyses of RSV-infected human alveolar type II (A549) epithelial cells identified several genes whose expression was altered from -5.5 to +56.4-fold. Four of the highly expressed genes contained STAT-binding elements. In A549 and normal human bronchial epithelial cells (NHBE), RSV induced phosphorylation and nuclear translocation of STAT-1alpha that was abrogated when RSV attachment was blocked. Treatment with a JAK-2 inhibitor or transfection with dominant-negative STAT-1alpha blocked STAT-1alpha activation and RSV infection. RSV also activated STAT-3 and IL-6 specific antibodies blocked this activation. Thus, activation of the STAT-1alpha and STAT-3 pathways play a role in RSV infection.  相似文献   

7.
The deregulated cross-talk between airway epithelial cells with subepithelial fibroblasts during inflammation drives the pathogenesis of asthma. Bioinformatics analysis and luciferase activity assay suggested that B cell lymphoma-2 (BCL2) and CXC ligand 12 (CXCL12) are potential targets of miR-23a. The aim of this study was to elucidate the effect of microRNA-23a (miR-23a) on BCL2, and CXCL12 in asthma. In E3 rats, miR-23a was upregulated in lung tissues after antigen-induced pulmonary inflammation during acute and chronic inflammation. Immunohistochemistry showed downregulation of BCL2 in the epithelium and of CXCL12 in subepithelial fibroblasts and smooth muscle cells. Treatment of isolated cells with miR-23a mimic or inhibitor modified the expression of BCL2 and of CXCL12 in the expected cell type-specific manner. Moreover, in epithelial cells, interleukin-4 upregulated miR-23a expression and thereby decreased the expression of BCL2, while increasing the caspase-3 expression, which was followed by apoptosis. In fibroblasts, the expression of miR-23a was increased by thymic stromal lymphopoietin (TSLP). Consequently, the CXCL12 expression was abrogated. The phosphorylation of CREB was also downregulated by TSLP through the action of miR-23a. This study describes a novel mechanism, where miR-23a is an important cell type-specific regulator for asthma-associated airway wall remodeling parameter. Thus, miR-23a may present a potential new target for the therapy of asthma.  相似文献   

8.

Background  

Zinc plays important roles in maintaining normal function of the prostate and in development of prostate malignancy. It has been demonstrated that prostate malignant epithelial cells contain much less cellular zinc than the surrounding normal epithelial cells. However, the pathway(s) which leads to lower zinc accumulation in malignant prostate epithelial cells is poorly understood. In this study, the zinc homeostatic features of two human prostate epithelial cell lines (non-tumorigenic, RWPE1, and tumorigenic, RWPE2) were investigated. Effects of over-expression of ZIP1 in RWPE2 on cell proliferation and apoptosis were also studied.  相似文献   

9.
10.
Inflammatory myopathies (IMs) are systemic diseases characterized by a T helper (Th) 1 type inflammatory response and cell infiltrates within skeletal muscles. The mainstay of treatment is drugs aimed at suppressing the immune system - corticosteroids and immunosuppressants. About 25% of patients are non-responders. Skeletal muscle cells seem actively involved in the immune-inflammatory response and not only a target; understanding the molecular bases of IMs might help drug development strategies. Within muscles the interaction between the chemokine interferon (IFN)γ inducible 10 kDa protein, CXCL10 or IP-10, and its specific receptor CXCR3, present on Th1 type infiltrating cells, likely plays a pivotal role, potentially offering the opportunity for therapeutic intervention. We aimed to clarify the involvement of human skeletal muscle cells in inflammatory processes in terms of CXCL10 secretion, to elucidate the engaged molecular mechanism(s) and, finally, to evaluate muscular cell responses, if any, to some immunosuppressants routinely used in IM treatment, such as methylprednisolone, methotrexate, cyclosporin A and Infliximab. We first isolated and characterized human fetal skeletal muscle cells (Hfsmc), which expressed the specific lineage markers and showed the competence to react in the context of an in vitro alloresponse. CXCL10 protein secretion by Hfsmc was similarly induced by the inflammatory cytokines interferon (IFN)γ and tumor necrosis factor (TNF)α, above undetectable control levels, through the activation of Stat1 and NF-kB pathways, respectively; CXCL10 secretion was significantly magnified by cytokine combination, and this synergy was associated to a significant up-regulation of TNFαRII; cytokine-induced CXCL10 secretion was considerably affected only by Infliximab. Our data suggested that human skeletal muscle cells might actively self-promote muscular inflammation by eliciting CXCL10 secretion, which is known to amplify Th1 cell tissue infiltration in vivo. In conclusion, we sustain that pharmacological targeting of CXCL10 within muscular cells might contribute to keep in control pro-Th1 polarization of the immune/inflammatory response.  相似文献   

11.
The expression of CXCR4/CXCL12 in first-trimester human trophoblast cells   总被引:10,自引:0,他引:10  
Wu X  Li DJ  Yuan MM  Zhu Y  Wang MY 《Biology of reproduction》2004,70(6):1877-1885
  相似文献   

12.
Burkholderia cenocepacia is an important pulmonary pathogen in individuals with cystic fibrosis (CF). Infection is often associated with severe pulmonary inflammation, and some patients develop a fatal necrotizing pneumonia and sepsis ('cepacia syndrome'). The mechanisms by which this species causes severe pulmonary inflammation are poorly understood. Here, we demonstrate that B. cenocepacia BC7, a potentially virulent representative of the epidemic ET12 lineage, binds to tumour necrosis factor receptor 1 (TNFR1) and activates TNFR1-related signalling pathway similar to TNF-α, a natural ligand for TNFR1. This interaction participates in stimulating a robust IL-8 production from CF airway epithelial cells. In contrast, BC45, a less virulent ET12 representative, and ATCC 25416, an environmental B. cepacia strain, do not bind to TNFR1 and stimulate only minimal IL-8 production from CF cells. Further, TNFR1 expression is increased in CF airway epithelial cells compared with non-CF cells. We also show that B. cenocepacia ET12 strain colocaizes with TNFR1 in vitro and in the lungs of CF patients who died due to infection with B. cenocepacia, ET12 strain. Together, these results suggest that interaction of B. cenocepacia , ET12 strain with TNFR1 may contribute to robust inflammatory responses elicited by this organism.  相似文献   

13.
14.
Sphingosine-1-phosphate (SPP) acts as a first messenger in immortalized human airway epithelial cells (CFNPE9o(-)), possibly interacting with an Edg family receptor. Expression of the SPP receptors Edg-1 and Edg-3, as well as a low level of Edg-5/H218, was detected in these cells, in agreement with their ability to specifically bind SPP. The related lipids, lysophosphatidic acid and sphingosylphosphorylcholine, were unable to displace SPP from its high affinity binding sites, suggesting that the biological responses to these different lysolipids are mediated by distinct receptors. SPP markedly inhibited forskolin-stimulated cAMP accumulation in a dose-dependent manner and caused a remarkable elevation of intracellular calcium, both effects being sensitive to pertussis toxin treatment. Most importantly, SPP stimulated phosphatidic acid formation, which was maximal after 2 min and decreased within 8-10 min. In the presence of butan-1-ol, suppression of SPP-induced phosphatidic acid formation and production of phosphatidylbutanol were found, clearly indicating activation of phospholipase D (PLD). This finding was also confirmed by analysis of the fatty acid composition of phosphatidic acid, showing an increase in the monounsaturated oleic acid only. The decrease of phosphatidic acid level after 8-10 min incubation with SPP was accompanied by a parallel increase of diacylglycerol production, which was abolished in the presence of butan-1-ol. This result indicates that activation of phospholipase D is followed by stimulation of phosphatidate phosphohydrolase activity. Phosphatidic acid formation was insensitive to protein kinase C inhibitors and almost completely inhibited by pertussis toxin treatment, suggesting that SPP activates phospholipase D via a G(i/o) protein-coupled receptor.  相似文献   

15.
The pathogenesis of age‐related macular degeneration (AMD) involves demise of the retinal pigment epithelium and death of photoreceptors. In this article, we investigated the response of human adult retinal pigmented epithelial (ARPE‐19) cells to 5‐(N,N‐hexamethylene)amiloride (HMA), an inhibitor of Na+/H+ exchangers. We observed that ARPE‐19 cells treated with HMA are unable to activate ‘classical’ apoptosis but they succeed to activate autophagy. In the first 2 hrs of HMA exposure, autophagy is efficient in protecting cells from death. Thereafter, autophagy is impaired, as indicated by p62 accumulation, and this protective mechanism becomes the executioner of cell death. This switch in autophagy property as a function of time for a single stimulus is here shown for the first time. The activation of autophagy was observed, at a lesser extent, with etoposide, suggesting that this event might be a general response of ARPE cells to stress and the most important pathway involved in cell resistance to adverse conditions and toxic stimuli.  相似文献   

16.
17.
Thapsigargin treatment of cultured cells leads to an increase in the intracellular calcium concentration, activation of calpain, and, in some cell types, apoptosis. Using a human prostate epithelial cell line that undergoes apoptosis in the presence of thapsigargin, we find decreased levels of IRS-1 protein levels during apoptosis. Inhibition of calpain prevents this decrease in IRS-1 protein; however, inhibitors of caspases or the proteasome are ineffective in maintaining IRS-1 levels. In terms of IGF-I-related second messenger proteins, the effect of thapsigargin is specific for IRS-1 since the protein levels of IGF-I receptor beta-subunit, Akt, Erk, and Shc are not affected. In addition to preventing the reduction in IRS-1, treatment of cells with calpain inhibitor II prevents apoptosis in response to thapsigargin. Finally, IRS-1 and calpain can be identified in protein complexes isolated using IRS-1-specific antibodies, indicating that calpain can associate with either IRS-1 or one of the proteins present in protein complexes that contain IRS-1. In total, these results suggest that IRS-1 may be targeted for degradation by calpain during apoptosis.  相似文献   

18.

Background

Human rhinovirus (HRV) triggers exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Cigarette smoking is the leading risk factor for the development of COPD and 25% of asthmatics smoke. Smoking asthmatics have worse symptoms and more frequent hospitalizations compared to non-smoking asthmatics. The degree of neutrophil recruitment to the airways correlates with disease severity in COPD and during viral exacerbations of asthma. We have previously shown that HRV and cigarette smoke, in the form of cigarette smoke extract (CSE), each induce expression of the neutrophil chemoattractant and activator, CXCL8, in human airway epithelial cells. Additionally, we demonstrated that the combination of HRV and CSE induces expression of levels of CXCL8 that are at least additive relative to induction by each stimulus alone, and that enhancement of CXCL8 expression by HRV+CSE is regulated, at least in part, via mRNA stabilization. Here we further investigate the mechanisms by which HRV+CSE enhances CXCL8 expression.

Methods

Primary human bronchial epithelial cells were cultured and treated with CSE alone, HRV alone or the combination of the two stimuli. Stabilizing/destabilizing proteins adenine/uridine-rich factor-1 (AUF-1), KH-type splicing regulatory protein (KHSRP) and human antigen R (HuR) were measured in cell lysates to determine expression levels following treatment. siRNA knockdown of each protein was used to assess their contribution to the induction of CXCL8 expression following treatment of cells with HRV and CSE.

Results

We show that total expression of stabilizing/de-stabilizing proteins linked to CXCL8 regulation, including AUF-1, KHSRP and HuR, are not altered by CSE, HRV or the combination of the two stimuli. Importantly, however, siRNA-mediated knock-down of HuR, but not AUF-1 or KHSRP, abolishes the enhancement of CXCL8 by HRV+CSE. Data were analyzed using one-way ANOVA with student Newman-Keuls post hoc analysis and values of p≤ 0.05 were considered significant.

Conclusions

Induction of CXCL8 by the combination of HRV and CSE is regulated by mRNA stabilization involving HuR. Thus, targeting the HuR pathway may be an effective method of dampening CXCL8 production during HRV-induced exacerbations of lower airway disease, particularly in COPD patients and asthmatic patients who smoke.  相似文献   

19.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

20.

Background  

Wnt signaling is implicated in many developmental decisions, including stem cell control, as well as in cancer. There are relatively few target genes known of the Wnt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号