首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Craniosynostosis (CS), the premature ossification of cranial sutures, is attributed to increased osteogenic potential of resident osteoblasts, yet the contribution of the surrounding extracellular matrix (ECM) on osteogenic differentiation is unclear. The osteoblast-secreted ECM provides binding sites for cellular adhesion and regulates the transport and signaling of osteoinductive factors secreted by the underlying dura mater. The binding affinity of each osteoinductive factor for the ECM may amplify or mute its relative effect, thus contributing to the rate of suture fusion. The purpose of this paper was to examine the role of ECM composition derived from calvarial osteoblasts on protein binding and its resultant effect on cell phenotype. We hypothesized that potent osteoinductive proteins present during sutural fusion (e.g., bone morphogenetic protein-2 (BMP-2) and transforming growth factor beta-1 (TGF-β1)) would exhibit distinct differences in binding when exposed to ECMs generated by human calvarial osteoblasts from unaffected control individuals (CI) or CS patients. Decellularized ECMs produced by osteoblasts from CI or CS patients were incubated in the presence of BMP-2 or TGF-β1, and the affinity of each protein was analyzed. The contribution of ECM composition to protein binding was interrogated by enzymatically modulating proteoglycan content within the ECM. BMP-2 had a similar binding affinity for each ECM, while TGF-β1 had a greater affinity for ECMs produced by osteoblasts from CI compared to CS patients. Enzymatic treatment of ECMs reduced protein binding. CS osteoblasts cultured on enzymatically-treated ECMs secreted by osteoblasts from CI patients in the presence of BMP-2 exhibited impaired osteogenic differentiation compared to cells on untreated ECMs. These data demonstrate the importance of protein binding to cell-secreted ECMs and confirm that protein-ECM interactions have an important role in directing osteoblastic differentiation of calvarial osteoblasts.  相似文献   

2.
We studied effect of artificial extracellular matrices (ECMs), such as collagen I, poly (N-p-vinylbenzyl-4-O-β-d-galactopyranosyl-d-gluconamide)(PVLA) and E-cadherin–IgG Fc (E-cad-Fc) on hepatic metabolism to identify the mechanism of in vivo hepatocellular functional and metabolic integrity. mRNA expression of liver function marker, cytochrome P450 (CYP) and transporter genes in hepatocytes were compared among used ECMs using real-time RT-PCR. mRNA expressions of Cyp2c29 and Cyp2d22 among CYP genes in hepatocytes on PVLA were recovered after 3 days due to enhanced liver-specific function by the spheroid formation of hepatocytes whereas mRNA expressions of CYP genes in hepatocytes on collagen and E-cad-Fc drastically decreased with time. mRNA expressions of the Cyp2c29 and Cyp2d22 in hepatocytes on PVLA were more recovered in the presence of epidermal growth factor (EGF) due to the more and bigger spheroid formation of hepatocytes. Multidrug resistance-associated protein 2 (Mrp2) protein was accumulated at intracellular lumen as similar to bile duct in hepatocyte spheroid formed on PVLA, indicating that spheroid formation of hepatocytes is very important for maintaining liver functions.  相似文献   

3.
The consistent association of Paleotropical Dipterocarpaceae with ectomycorrhizal (ECM) fungi suggests that ECM status is an ancestral character in the family. Despite its distinctive morphology, Pakaraimaea dipterocarpacea, a Neotropical Dipterocarpaceae endemic to the Guayana Region, is phylogenetically related to the Paleotropical Dipterocarpaceae. The confirmation of P. dipterocarpacea ECM status would indicate that Paleotropical Dipterocarpaceae and P. dipterocarpacea probably had a common ECM ancestor. Mycorrhizal colonization of P. dipterocarpacea was assessed, and ECMs were recorded using histological and molecular methods. P. dipterocarpacea was highly colonized by typical ECMs, and several ECM fungal taxa belonging to Clavulinaceae, Sebacinaceae, Cortinariaceae and Amanitaceae were identified. This paper provides the first documented evidence of ECM in a neotropical genus of Dipterocarpaceae and indicates that ECMs possibly evolved in Gondwana in ancestors of Dipterocarpaceae before the separation of South America from Africa by the Atlantic, c. 135 million years ago. The observation of Sebacinaceae and Clavulinaceae suggests that broad host range fungi are important components of P. dipterocarpacea ECM communities.  相似文献   

4.
Kwon Y  Cukierman E  Godwin AK 《PloS one》2011,6(4):e18872
Epithelial ovarian cancer is an aggressive and deadly disease and understanding its invasion mechanisms is critical for its treatment. We sought to study the penetration/invasion of ovarian tumor cells into extracellular matrices (ECMs) using a fibroblast-derived three-dimensional (3D) culture model and time-lapse and confocal imaging. Twelve ovarian tumor cells were evaluated and classified into distinct groups based on their ECM remodeling phenotypes; those that degraded the ECM (represented by OVCAR5 cells) and those that did not (represented by OVCAR10 cells). Cells exhibiting a distinct ECM modifying behavior were also segregated by epithelial- or mesenchymal-like phenotypes and uPA or MMP-2/MMP-9 expression. The cells, which presented epithelial-like phenotypes, penetrated the ECM using proteases and maintained intact cell-cell interactions, while cells exhibiting mesenchymal phenotypes modified the matrices via Rho-associated serine/threonine kinase (ROCK) in the absence of apparent cell-cell interactions. Overall, this study demonstrates that different mechanisms of modifying matrices by ovarian tumor cells may reflect heterogeneity among tumors and emphasize the need to systematically assess these mechanisms to better design effective therapies.  相似文献   

5.
Extracellular matrices (ECMs) of phylogenetically very distant organisms were tested for their ability to support cell adhesion, spreading and DNA replication in reciprocal xenograft adhesion tests. Mechanically dissociated cells of the medusa Podocoryne carnea (Cnidaria, Hydrozoa) were seeded on ECMs of polyps and medusa, and on several ECM glycoproteins or entire ECMs from vertebrates. In reciprocal experiments, cells from different vertebrate cell-lines were seeded on ECMs of polyps, medusae and also on electrophoresed and blotted extracts of both types of ECMs. The results demonstrate that medusa cells adhere and spread on polyp and medusa ECMs but do not recognize vertebrate ECMs or purified ECM glycoproteins. Vertebrate cells in contrast adhere, spread and proliferate on ECMs of polyps and medusae. The number of attached cells depends on the cell type, the type of ECM and, in certain cases, on the stage of the cell cycle. Cell adhesion experiments with pretreated ECMs of polyps and medusae, e.g. oxidation of carbohydrate residues with sodium-metaperiodate, or blocking of certain carbohydrate moieties with the lectin wheat germ agglutinin or a carbohydrate-specific monoclonal antibody, demonstrate that ECM carbohydrates are more important for cell-ECM interactions of medusa cells than for vertebrate cells. Furthermore, the experiments indicate that polyp and medusa ECMs contain different components which strongly modulate adhesion, spreading and DNA replication of vertebrate cells.  相似文献   

6.
Interaction of factors determining oxygen uptake at the onset of exercise.   总被引:10,自引:0,他引:10  
Considerable debate surrounds the issue of whether the rate of adaptation of skeletal muscle O2 consumption (QO2) at the onset of exercise is limited by 1) the inertia of intrinsic cellular metabolic signals and enzyme activation or 2) the availability of O2 to the mitochondria, as determined by an extrinsic inertia of convective and diffusive O2 transport mechanisms. This review critically examines evidence for both hypotheses and clarifies important limitations in the experimental and theoretical approaches to this issue. A review of biochemical evidence suggests that a given respiratory rate is a function of the net drive of phosphorylation potential and redox potential and cellular mitochondrial PO2 (PmitoO2). Changes in both phosphorylation and redox potential are determined by intrinsic metabolic inertia. PmitoO2 is determined by the extrinsic inertia of both convective and diffusive O2 transport mechanisms during the adaptation to exercise and the rate of mitochondrial O2 utilization. In a number of exercise conditions, PmitoO2 appears to be within a range capable of modulating muscle metabolism. Within this context, adjustments in the phosphate energy state of the cell would serve as a cytosolic "transducer," linking ATP consumption with mitochondrial ATP production and, therefore, O2 consumption. The availability of reducing equivalents and O2 would modulate the rate of adaptation of QO2.  相似文献   

7.
The extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell‐secreted ECMs have become of interest as they reproduce tissue‐architecture and modulate the promising properties of mesenchymal stem cells (MSCs). We have previously created an in vitro model of human osteoblast‐derived devitalized ECM that was osteopromotive for MSCs. The aim of this study was to identify ECM regulatory proteins able to modulate MSC differentiation to broaden the spectrum of MSC clinical applications. To this end, we created two additional models of devitalized ECMs with different mineralization phenotypes. Our results showed that the ECM derived from osteoblast‐differentiated MSCs had increased osteogenic potential compared to ECM derived from undifferentiated MSCs and non‐ECM cultures. Proteomic analysis revealed that structural ECM proteins and ribosomal proteins were upregulated in the ECM from undifferentiated MSCs. A similar response profile was obtained by treating osteoblast‐differentiating MSCs with Activin‐A. Extracellular proteins were upregulated in Activin‐A ECM, whereas mitochondrial and membrane proteins were downregulated. In summary, this study illustrates that the composition of different MSC‐secreted ECMs is important to regulate the osteogenic differentiation of MSCs. These models of devitalized ECMs could be used to modulate MSC properties to regulate bone quality.  相似文献   

8.
9.
Fibroblast growth factors (FGFs) play critical roles in development, maintenance, and repair following injury or disease in the lung. Their activity is modulated by a variety of factors, including FGF-binding protein (FGF-BP; HBp-17) and N-deacetylase/N-sulfotransferase-1 (NDST-1). Functionally, FGF-BP shuttles FGFs from binding sites in ECMs to cell surfaces and enhances FGF binding and signaling, whereas NDST-1 adds sulfate groups to FGF coreceptor proteoglycans and modulates alveolar type II (ATII) cell maturation and differentiation. Since the sulfated nature of ECMs is a critical determinant of their relationship with FGFs, we predicted that ECMs and their sulfation would modulate the expression of FGF-BP and NDST-1. To examine this question, selected culture conditions of rat ATII cells were manipulated [with and without coculture with rat lung fibroblasts (RLFs)] by treatment with heparin or sodium chlorate (inhibitor of sulfation) for 24-96 h. In addition, ECMs biosynthesized by RLFs for up to 10 days before coculture were used as model intervening barriers to communication between alveolar cells and fibroblasts. FGF-BP expression was enhanced in ATII cells by coculture with RLF cells and least suppressed by desulfated heparin. NDST-1 expression in ATII cells was most sensitive to the amount of sulfation in medium and ECM and enhanced by fully sulfated heparin. Preformed ECM appears to supply factors that modify subsequent treatment effects. These results demonstrate a potentially important modulatory influence of sulfated ECMs and fibroblasts on FGF-BP and NDST-1 at the gene expression level.  相似文献   

10.
The extracellular matrix (ECM) is a complex meshwork of cross-linked proteins that provides biophysical and biochemical cues that are major regulators of cell proliferation, survival, migration, etc. The ECM plays important roles in development and in diverse pathologies including cardio-vascular and musculo-skeletal diseases, fibrosis, and cancer. Thus, characterizing the composition of ECMs of normal and diseased tissues could lead to the identification of novel prognostic and diagnostic biomarkers and potential novel therapeutic targets. However, the very nature of ECM proteins (large in size, cross-linked and covalently bound, heavily glycosylated) has rendered biochemical analyses of ECMs challenging. To overcome this challenge, we developed a method to enrich ECMs from fresh or frozen tissues and tumors that takes advantage of the insolubility of ECM proteins. We describe here in detail the decellularization procedure that consists of sequential incubations in buffers of different pH and salt and detergent concentrations and that results in 1) the extraction of intracellular (cytosolic, nuclear, membrane and cytoskeletal) proteins and 2) the enrichment of ECM proteins. We then describe how to deglycosylate and digest ECM-enriched protein preparations into peptides for subsequent analysis by mass spectrometry.  相似文献   

11.
During angiogenesis, cytoskeletal dynamics that mediate endothelial cell branching morphogenesis during vascular guidance are thought to be regulated by physical attributes of the extracellular matrix (ECM) in a process termed mechanosensing. Here, we tested the involvement of microtubules in linking mechanosensing to endothelial cell branching morphogenesis. We used a recently developed microtubule plus end-tracking program to show that specific parameters of microtubule assembly dynamics, growth speed and growth persistence, are globally and regionally modified by, and contribute to, ECM mechanosensing. We demonstrated that engagement of compliant two-dimensional or three-dimensional ECMs induces local differences in microtubule growth speed that require myosin II contractility. Finally, we found that microtubule growth persistence is modulated by myosin II-mediated compliance mechanosensing when cells are cultured on two-dimensional ECMs, whereas three-dimensional ECM engagement makes microtubule growth persistence insensitive to changes in ECM compliance. Thus, compliance and dimensionality ECM mechanosensing pathways independently regulate specific and distinct microtubule dynamics parameters in endothelial cells to guide branching morphogenesis in physically complex ECMs.  相似文献   

12.
Knowledge of the rapidly developing hierarchy of controls affecting vascular development in placenta is required to understand how the growth factors and their receptor-mediated signals actually produce vessels. At the cell biological level, these events clearly require stable interactions between the cells, and cells with the surrounding ECM. The objective of the study was to understand the role of integrins and ECM on the expression and secretion of angiogenin in placentas and from trophoblasts in culture. Functionally active term placental explant culture and trophoblast cultures were used to demonstrate the differential secretion profile of angiogenin and real-time quantitative RT-PCR to demonstrate the mRNA expression in the presence or absence of ECM proteins. In this study, a significant increase in expression and secretion of angiogenin occurred in the presence of vitronectin (VN) and fibronectin (FN). Using antibody-blocking experiments it was also demonstrated that the angiogenin secretion is mediated by placental integrins, alpha(V)beta3 and alpha5beta1. In addition, exposure to hypoxic conditions resulted in diminished angiogenin secretion in the presence of both ECMs suggesting that angiogenin expression in the presence of ECM is modulated by local O2 concentration. In conclusion, this study provides evidence for the regulatory role of ECM and integrins on the mRNA expression and secretion of angiogenin in human placenta. ECMs may have a pivotal role in enhancing secretion of this peptide necessary for placental angiogenesis and provides the impetus as additional targets for the control of angiogenesis in pathological pregnancy.  相似文献   

13.
A priori knowledge of the dissolved oxygen (O2) concentration profile within a hepatic hollow fiber (HF) bioreactor is important in developing an effective bioartificial liver assist device (BLAD). O2 provision is limiting within HF bioreactors and we hypothesize that supplementing a hepatic HF bioreactor's circulating media with bovine red blood cells (bRBCs), which function as an O2 carrier, will improve oxygenation. The dissolved O2 concentration profile within a single HF (lumen, membrane, and representative extra capillary space (ECS)) was modeled with the finite element method, and compared to experimentally measured data obtained on an actual HF bioreactor with the same dimensions housing C3A hepatoma cells. Our results (experimental and modeling) indicate bRBC supplementation of the circulating media leads to an increase in O2 consumed by C3A cells. Under certain experimental conditions (pO2,IN) = 95 mmHg, Q = 8.30 mL/min), the addition of bRBCs at 5% of the average in vivo human red blood cell concentration (% hRBC) results in approximately 50% increase in the O2 consumption rate (OCR). By simply adjusting the operating conditions (pO2,IN) = 25 mmHg, Q = 1.77 mL/min) and increasing bRBC concentration to 25% hRBC the OCR increase is approximately 10-fold. However, the improved O2 concentration profile experienced by the C3A cells could not duplicate the full range of in vivo O2 tensions (25-70 mmHg) typically experienced within the liver sinusoid with this particular HF bioreactor. Nonetheless, we demonstrate that the O2 transport model accurately predicts O2 consumption within a HF bioreactor, thus setting up the modeling framework for improving the design of future hepatic HF bioreactors.  相似文献   

14.
In vivo gap junctions (gj) are common in the subumbrellar plate endoderm of anthomedusa. When isolated and cultivated in artificial sea water the tissue, consisting of one cell type only, forms a spheroid in which all gap junctions disappear. Gap junction (gj) formation can, however, be induced by attachment and consecutive spreading of the endodermal tissue (spheroid) on stretched extracellular matrix (ECM) material isolated from the polyp stage (with Ca2+-Mg2+-free sea water, without EDTA). Formation, and loss of gj is reversible and strictly corresponds with the alteration from the monolayer 'spread' (on stretched ECM) to 'spheroid' arrangement (no ECM) of the endodermal cells. The functional competence of induced gj is ascertained by injection of Lucifer Yellow, and the transfer of the dye is used to map the pattern of communication. The experimental conditions that result in gj formation simulate the in vivo situation of the endoderm. The influence of the ECM on gj formation, and the structural organization of the isolated endodermal tissue in this well defined in vitro system are discussed.  相似文献   

15.
The effects of microenvironmental geometric configurations on hepatocyte self-assembly were investigated for the first time. Primary hepatocytes were cultured on a flat surface and in differently shaped hollow lumens of two gel types: a native hydrogel (alginate) and a synthetic hydrogel (polyethylene glycol, PEG). The lumens were in the shapes of a cylinder, triangular prism and square column. The results of cell morphology and functionality revealed that a better culture environment for rapid spheroid formation was achieved in the hollow lumens of alginate gel than on the flat surface. Among the lumen configurations, the cylindrical one was the best. Additionally, differences between cell behaviors on a flat surface and in a hollow cylinder lumen were more evident in the PEG hydrogel. Hence, a microenvironment with the proper geometric morphology can benefit the aggregation of hepatocytes and facilitate spheroid formation.  相似文献   

16.
A scanning electron-microscopic study was carried out on the extracellular matrices (ECMs) in freeze-dried newt embryos from the cleavage to the gastrula stage. The results revealed the appearance, accumulation and distribution of two types of ECMs, a fibrillar ECM in the blastocoel and an amorphous ECM on the inner surface of the blastocoelic wall (BW). The fibrillar ECM first appeared in the blastocoel at the cleavage stage and increased notably in quantity at the blastula and gastrula stages. On the other hand, the amorphous ECM was initially detected on the inner surface of the BW at the beginning of gastrulation and it increased in quantity during gastrulation. With the progress of archenteron invagination, the amorphous ECM was found to be deposited in the space between the BW and migrating cells.  相似文献   

17.
Decellularized human extracellular matrices (ECMs) are an extremely appealing biomaterial for tissue engineering and regenerative medicine. In this study, we decellularized human adipose tissue, fabricated a thin ECM sheet and explored the potential of this human adipose-derived ECM sheet as a substrate to support the formation of tissues other than adipose tissue. Acellular ECM sheets were fabricated from human adipose tissue through successive physical and chemical treatments: homogenization, centrifugation, casting, freeze-drying and sodium dodecyl sulfate treatment. The ECM sheets exhibited good mechanical properties, despite their porous structure. They degraded quickly in the presence of collagenase and the degradation rate increased with the collagenase concentration in phosphate-buffered saline. Five different human cell types, covering a broad range of cells and applications (normal human dermal fibroblasts, human aortic smooth muscle cells, human chondrocytes, human umbilical vein endothelial cells and human adipose-derived stem cells), were seeded onto the ECM sheets. All the human cell types spread well, proliferated and were successfully integrated into the decellularized ECM sheet. Overall, the results suggest that recellularized ECM sheets are a promising substitute for defective or damaged human tissues.  相似文献   

18.
One of the primary conditions necessary for the success of magnetic fusion reactors is the ability to mitigate damage to the first wall during ELMs and plasma disruptions. A potential solution involves the use of flowing liquid metals such as lithium as a first wall, but ensuring its stability under the extreme environments in the reactor would be imperative. The conditions leading to instabilities on the free surface of flowing liquid lithium (LL) layers on a substrate and in a porous material are investigated using both analytical methods and computational modeling, with consideration for the effects of LL velocity, LL layer thickness, substrate porosity, LL permeability, and hydrogen (H) plasma velocity. Linear stability analysis is used to predict the critical velocity and wavelength-dependence of wave growth, as well as the onset of instability. The modeling of LL flows is performed on a flat substrate and in a porous material for various LL thicknesses, LL and H plasma velocities to analyze the conditions leading to droplet formation and ejection.  相似文献   

19.
The extracellular matrix (ECM) provides the principal means by which mechanical information is communicated between tissue and cellular levels of function. These mechanical signals play a central role in controlling cell fate and establishing tissue structure and function. However, little is known regarding the mechanisms by which specific structural and mechanical properties of the ECM influence its interaction with cells, especially within a tissuelike context. This lack of knowledge precludes formulation of biomimetic microenvironments for effective tissue repair and replacement. The present study determined the role of collagen fibril density in regulating local cell-ECM biomechanics and fundamental fibroblast behavior. The model system consisted of fibroblasts seeded within collagen ECMs with controlled microstructure. Confocal microscopy was used to collect multidimensional images of both ECM microstructure and specific cellular characteristics. From these images temporal changes in three-dimensional cell morphology, time- and space-dependent changes in the three-dimensional local strain state of a cell and its ECM, and spatial distribution of beta1-integrin were quantified. Results showed that fibroblasts grown within high-fibril-density ECMs had decreased length-to-height ratios, increased surface areas, and a greater number of projections. Furthermore, fibroblasts within low-fibril-density ECMs reorganized their ECM to a greater extent, and it appeared that beta1-integrin localization was related to local strain and ECM remodeling events. Finally, fibroblast proliferation was enhanced in low-fibril-density ECMs. Collectively, these results are significant because they provide new insight into how specific physical properties of a cell's ECM microenvironment contribute to tissue remodeling events in vivo and to the design and engineering of functional tissue replacements.  相似文献   

20.
We have previously shown that transforming growth factor-β1 (TGF-β1) enhances the epidermal growth factor- (EGF) and transforming growth factor-α (TGF-α)-stimulated motility of rat hepatocytes in an extracellular matrix (ECM)-dependent fashion (Stolz and Michalopoulos, 1997, J. Cell. Physiol., 170:57–68). We have extended this study to examine the effects of TGF-β1 on hepatocyte growth factor (HGF) and EGF-stimulated motility of rat nonparenchymal liver epithelial cells (RLECs) in vitro and determined that chemotaxis, scattering, and monolayer wound healing by EGF was synergistically enhanced by TGF-β1 on all ECMs examined. However, HGF-based motility, unlike EGF-stimulated motility, was modulated in an assay-dependent manner by TGF-β1. HGF-stimulated chemotaxis was dramatically decreased by addition of TGF-β1, but wound healing was synergistically enhanced by TGF-β1 on all ECMs examined. HGF-based scattering was not consistently affected by TGF-β1 on any ECM tested except on laminin, where scattering was often reduced by the concomitant addition of TGF-β1. TGF-β1 enhanced the motility associated with monolayer wound healing by HGF or EGF independent of DNA synthesis, because tritiated thymidine uptake was consistently reduced by 60% in the presence of TGF-β1. The data indicate that HGF and EGF motility do not follow redundant signal-transduction pathways and that specific growth factor motility-related events, as measured by wound healing, scattering, and chemotaxis, are modulated independently by ECM and TGF-β1. J. Cell. Physiol. 175:30–40, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号