首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common fragile sites are loci that preferentially form gaps and breaks on metaphase chromosomes when DNA synthesis is perturbed, particularly after treatment with the DNA polymerase inhibitor, aphidicolin. We and others have identified several cell cycle checkpoint and DNA repair proteins that influence common fragile site stability. However, the initial events underlying fragile site breakage remain poorly understood. We demonstrate here that aphidicolin-induced gaps and breaks at fragile sites are prevented when cells are co-treated with low concentrations of the topoisomerase I inhibitor, camptothecin. This reduction in breakage is accompanied by a reduction in aphidicolin-induced RPA foci, CHK1 and RPA2 phosphorylation, and PCNA monoubiquitination, indicative of reduced levels of single stranded DNA. Furthermore, camptothecin reduces spontaneous fragile site breakage seen in cells lacking ATR, even in the absence of aphidicolin. These data from cultured human cells demonstrate that topoisomerase I activity is required for DNA common fragile site breaks and suggest that polymerase–helicase uncoupling is a key initial event in this process.  相似文献   

2.
Chromosome breakage and recombination at fragile sites.   总被引:15,自引:0,他引:15       下载免费PDF全文
Chromosomal fragile sites are points on chromosomes that usually appear as nonstaining chromosome or chromatid gaps. It has frequently been suggested that fragile sites may be involved in chromosome breakage and recombination events. We and others have previously shown that fragile sites predispose to intrachromosomal recombination as measured by sister-chromatid exchanges. These findings suggested that fragile site expression often, if not always, is accompanied by DNA strand breakage. In the present report, fragile sites are shown to predispose to deletions and interchromosomal recombination. By use of somatic cell hybrids containing either human chromosome 3 or the fragile X chromosome, deletions and translocations were induced by FUdR or aphidicolin with breakpoints at the fragile sites Xq27 or 3p14.2 (FRA3B) or at points so close to the fragile sites as to be cytogenetically indistinguishable. Southern blot analysis of DNA from a panel of chromosome 3 deletion and translocation hybrids was then utilized to detect loss or retention of markers flanking FRA3B and to corroborate the cytogenetic evidence that the breakpoints were at this fragile site. One cell line with a reciprocal translocation between human chromosome 3 (with breakpoint at 3p14.2) and a hamster chromosome showed cytogenetically that the fragile site was expressed on both derivative chromosomes, supporting the hypothesis that the fragile site represents a repeated sequence. The approach described provides a means of generating specific rearrangements in somatic cell hybrids with a breakpoint at a fragile site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
WRN is a member of the RecQ family of DNA helicases implicated in the resolution of DNA structures leading to the stall of replication forks. Fragile sites have been proposed to be DNA regions particularly sensitive to replicative stress. Here, we establish that WRN is a key regulator of fragile site stability. We demonstrate that in response to mild doses of aphidicolin, WRN is efficiently relocalized in nuclear foci in replicating cells and that WRN deficiency is associated with accumulation of gaps and breaks at common fragile sites even under unperturbed conditions. By expressing WRN isoforms impaired in either helicase or exonuclease activity in defective cells, we identified WRN helicase activity as the function required for maintaining the stability of fragile sites. Finally, we find that WRN stabilizes fragile sites acting in a common pathway with the ataxia telangiectasia and Rad3 related replication checkpoint. These findings provide the first evidence of a crucial role for a helicase in protecting cells against chromosome breakage at normally occurring replication fork stalling sites.  相似文献   

4.
Gene amplification, a key mechanism for oncogene activation and drug resistance in tumour cells, involves the generation and joining of DNA double-strand breaks. Amplified DNA can be carried either on intra-chromosomal arrays or on extra-chromosomal elements (double minutes). We previously showed that, in rodent cells deficient in DNA-PKcs, intra-chromosomal amplification is significantly enhanced. In the present work, we studied gene amplification in human HeLa cell lines in which the expression of the DNA-PKcs gene was constitutively inhibited by shRNAs. These cell lines showed an increased sensitivity to ionizing radiations, an enhanced frequency of chromosomal aberrations and an increased rate of occurrence of methotrexate resistant colonies compared to the control cell lines (6-18 times). The main mechanism of resistance to methotrexate was extra-chromosomal amplification of the dihydrofolate reductase gene. These results indicate that, in human cells, inhibition of DNA-PKcs gene expression favours gene amplification occurring via the production of double minutes. In addition, they show that cell lines constitutively expressing shRNAs are good model systems to study the role of specific functions in gene amplification.  相似文献   

5.
We have devised a mathematical model of gene amplification utilizing recent experimental observations concerning dihydrofolate reductase (DHFR) gene amplification in CHO cells. The mathematical model, based on a biological model which proposes that acentric elements are the initial intermediates in gene amplification, includes the following features: (1) initiation of amplification by chromosomal breakage to produce an acentric structure; (2) replication of acentric DNA, once per cell cycle; (3) dissociation of replicated acentric DNA; (4) unequal segregation of acentric DNA fragments to daughter cells at mitosis; (5) subsequent reintegration of acentric fragments into chromosomes. These processes are assumed to be independent for each element present in a cell at a given time. Thus, processes of unequal segregation and integration may occur in parallel, not necessarily in a unique sequence, and may be reiterated in one or multiple cell cycles. These events are described mathematically as a Galton-Watson branching process with denumerable infinity of object types. This mathematical model qualitatively and quantitatively reproduces the major elements of the dynamical behavior of DHFR genes observed experimentally. The agreement between the mathematical model and the experimental data lends credence to the biological model proposed by Windle et al. (1991), including the importance of chromosome breakage and subsequent gene deletion resulting from resection of the broken chromosome ends as initial events in gene amplification.  相似文献   

6.
Agents that inhibit DNA synthesis increase the frequency of methotrexate resistance and gene amplification in cultured mammalian cells. Chinese hamster ovary cells blocked with hydroxyurea rereplicated dihydrofolate reductase gene sequences within a single cell cycle upon release from the block (Mariani, B.D., and Schimke, R.T. (1984) J. Biol. Chem. 259, 1901-1910). Perturbation of DNA synthesis was postulated to result in misfiring of replicon initiation, subsequent over-replication of DNA sequences, and amplification of specific genes. To test this hypothesis, we have exposed Chinese hamster ovary cells pulsed with bromodeoxyuridine to three agents that inhibit DNA synthesis and enhance gene amplification: UV irradiation, hydroxyurea, and aphidicolin. After release from the block, the progression of cells throughout the cell cycle was analyzed by flow cytometry through simultaneous measurement of total cellular DNA content and bromodeoxyuridine-labeled DNA. Although the cell cycle effects varied depending on the agent used for the block, in all cases a subset of cells that were in S phase at the time of the block exhibited DNA histograms with greater than 4C DNA content at various times after release and prior to cell division. Cells with the excess DNA were approximately 10-fold more resistant to methotrexate compared to treated cells with normal DNA content or untreated cells. Therefore, cells in S phase at the time of the block produce excess DNA per cell prior to division, and this over-replicated DNA may be relevant to gene amplification and drug resistance.  相似文献   

7.
We have investigated different parameters characterizing carcinogen-mediated enhancement of methotrexate resistance in Chinese hamster ovary (CHO) cells and in simian virus 40-transformed Chinese hamster embryo (C060) cells. We show that this enhancement reflects dihydrofolate reductase (dhfr) gene amplification. The carcinogens used in this work are alkylating agents and UV irradiation. Both types of carcinogens induce a transient enhancement of methotrexate resistance which increases gradually from the time of treatment to 72 to 96 h later and decreases thereafter. Increasing doses of carcinogens decrease cell survival and increase the enhancement of methotrexate resistance. Enhancement was observed when cells were treated at different stages in the cell cycle, and it was maximal when cells were treated during the early S phase. These studies of carcinogen-mediated dhfr gene amplification coupled with our earlier studies on viral DNA amplification in simian virus 40-transformed cells demonstrate that the same parameters characterize the amplification of both genes. Possible cellular mechanisms responsible for the carcinogen-mediated gene amplification phenomenon are discussed.  相似文献   

8.
The in vitro amplification method for heterologous gene expression in mammalian cells is based on the stable transfection of cells with long, linear DNA molecules having several copies of complete expression units, coding for the gene of interest, linked to one terminal unit, coding for the selectable marker. DNA concatenamers containing additional expression units can also be prepared: we exploited this feature by co-polymerizing expression units coding for granulocyte colony-stimulating factor (G-CSF) with cassettes for dihydrofolate reductase (DHFR) and for neomycin (Nm) resistance, as selectable markers. We were thus able to obtain high level production of G-CSF in chinese hamster ovary (CHO) dhfr- cells by combining in vitro amplification to just one step of in vivo amplification. This approach required a considerably shorter time than the classical, stepwise amplification by methotrexate.  相似文献   

9.
Chromosomal instability at common fragile sites in Seckel syndrome   总被引:2,自引:0,他引:2       下载免费PDF全文
Seckel syndrome (SCKL) is a rare, genetically heterogeneous disorder, with dysmorphic facial appearance, growth retardation, microcephaly, mental retardation, variable chromosomal instability, and hematological disorders. To date, three loci have been linked to this syndrome, and recently, the gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) was identified as the gene mutated at the SCKL1 locus. The ATR mutation affects splicing efficiency, resulting in low levels of ATR in affected individuals. Elsewhere, we reported increased instability at common chromosomal fragile sites in cells lacking the replication checkpoint gene ATR. Here, we tested whether cells from patients carrying the SCKL1 mutation would show increased chromosome breakage following replication stress. We found that, compared with controls, there is greater chromosomal instability, particularly at fragile sites, in SCKL1-affected patient cells after treatment with aphidicolin, an inhibitor of DNA polymerase alpha and other polymerases. The difference in chromosomal instability between control and patient cells increases at higher levels of aphidicolin treatment, suggesting that the low level of ATR present in these patients is not sufficient to respond appropriately to replication stress. This is the first human genetic syndrome associated with increased chromosome instability at fragile sites following replication stress, and these findings may be related to the phenotypic findings in patients with SCKL1.  相似文献   

10.
11.
The common fragile site at chromosomal band 3p14.2 (FRA3B) is the most sensitive single site in the human genome to induced chromosomal lesions. This fragile site may predispose chromosome 3p to breakage that is commonly observed in lung, renal, and many other cancers. We previously used aphidicolin induction of FRA3B expression in a chromosome 3-only somatic cell hybrid to generate a series of hybrids with breakpoints in the 3p14.2 region. These breakpoints were localized to two distinct clusters, separated by 200 kb, that lie on either side of a region of frequent breakage within FRA3B as observed by FISH analysis. Seven proximal aphidicolin-induced breakpoints were localized at or near the end of a THE element. The THE-1 element is flanked by LINE andAlurepetitive elements. The eight distal aphidicolin-induced breakpoints clustered in a region capable of forming multiple hairpin-like structures. Thus repetitive elements and hairpin-like structures may be responsible for chromosome fragility in this region.  相似文献   

12.
《The Journal of cell biology》1996,135(6):1685-1700
We report a new method for in situ localization of DNA sequences that allows excellent preservation of nuclear and chromosomal ultrastructure and direct, in vivo observations. 256 direct repeats of the lac operator were added to vector constructs used for transfection and served as a tag for labeling by lac repressor. This system was first characterized by visualization of chromosome homogeneously staining regions (HSRs) produced by gene amplification using a dihydrofolate reductase (DHFR) expression vector with methotrexate selection. Using electron microscopy, most HSRs showed approximately 100-nm fibers, as described previously for the bulk, large-scale chromatin organization in these cells, and by light microscopy, distinct, large-scale chromatin fibers could be traced in vivo up to 5 microns in length. Subsequent experiments demonstrated the potential for more general applications of this labeling technology. Single and multiple copies of the integrated vector could be detected in living CHO cells before gene amplification, and detection of a single 256 lac operator repeat and its stability during mitosis was demonstrated by its targeted insertion into budding yeast cells by homologous recombination. In both CHO cells and yeast, use of the green fluorescent protein-lac repressor protein allowed extended, in vivo observations of the operator-tagged chromosomal DNA. Future applications of this technology should facilitate structural, functional, and genetic analysis of chromatin organization, chromosome dynamics, and nuclear architecture.  相似文献   

13.
A novel gene designated as fragile site-associated (FSA) gene was recently identified by positional cloning from the CHO 1q31 fragile site which plays an important role in regulating amplification of multidrug resistance (mdr1) gene in multidrug-resistant cells. FSA produces a message of approximately 16 kb which encodes an open-reading frame of 5005 amino acids. FSA shares sequence similarity with that in Caenorhabditis elegans lpd-3, a lipid storage gene. Using immunohistochemical staining and RNA in situ hybridization we report here that expression of FSA is associated with developmental programs of spermatogenesis and mammary gland in mice. Real-time RT-PCR results also support the upregulation of FSA expression in mammary gland development. Expression of FSA in many tissues including colon, skin, ovary, prostate, and bladder is mainly in the postmitotic, well-differentiated compartments. Moreover, levels of FSA expression are downregulated in tumors of these tissue origins. These results suggest that FSA also plays important roles in regulating mammalian epithelial growth and differentiation and tumor development.  相似文献   

14.
The gene amplification plays a critical role in the malignant transformation of mammalian cells. The most widespread method for amplifying a target gene in cell culture is the use of methotrexate (Mtx) treatment to amplify dihydrofolate reductase (Dhfr). Whereas, we found that a plasmid bearing both a mammalian origin of replication (initiation region; IR) and a matrix attachment region (MAR) was spontaneously amplified in mammalian cells. In this study, we attempted to uncover the underlying mechanism by which the IR/MAR sequence might accelerate Mtx induced Dhfr amplification. The plasmid containing the IR/MAR was extrachromosomally amplified, and then integrated at multiple chromosomal locations within individual cells, increasing the likelihood that the plasmid might be inserted into a chromosomal environment that permits high expression and further amplification. Efficient amplification of this plasmid alleviated the genotoxicity of Mtx. Clone-based cytogenetic and sequence analysis revealed that the plasmid was amplified in a chromosomal context by breakage-fusion-bridge cycles operating either at the plasmid repeat or at the flanking fragile site activated by Mtx. This mechanism explains how a circular molecule bearing IR/MAR sequences of chromosomal origin might be amplified under replication stress, and also provides insight into gene amplification in human cancer.  相似文献   

15.
Antifolates, such as methotrexate (MTX), are the treatment of choice for numerous cancers. MTX inhibits dihydrofolate reductase (DHFR), which is essential for cell growth and proliferation. Mammalian cells can acquire resistance to antifolate treatment through a variety of mechanisms but decreased antifolate titers due to changes in drug efflux or influx, or alternatively, the amplification of the DHFR gene are the most commonly acquired resistance mechanisms. In Drosophila, however, a resistant phenotype has only been observed to occur by mutation resulting in a MTX-resistant DHFR. It is unclear if differences in gene structure and/or genome organization between Drosophila and mammals contribute to the observed differences in acquired drug resistance. To investigate if gene structure is involved, Drosophila Dhfr cDNA was transfected into a line of CHO cells that do not express endogenous DHFR. These transgenic cells, together with wild-type CHO cells, were selected for 19 months for resistance to increasing concentrations of MTX, from 50- to 200-fold over the initial concentration. Since Drosophila Dhfr appears to have been amplified several fold in the selected transgenic mammalian cells, a difference in genome organization may contribute to the mechanism of MTX resistance.  相似文献   

16.
《Process Biochemistry》2010,45(12):1845-1851
Chinese hamster ovary (CHO) cells are widely used in producing therapeutic proteins. Gene amplification techniques are frequently used in improving protein production, and the dihydrofolate reductase (DHFR) gene amplification system is most widely used for the CHO cell line. We previously constructed a CHO genomic bacterial artificial chromosome (BAC) library from a mouse Dhfr-amplified CHO DR1000L-4N cell line and found one BAC clone (Cg0031N14) containing a CHO genomic DNA sequence adjacent to Dhfr. The BAC clone contained a large palindrome structure with a small inverted repeat in the junction region. To investigate the effect of the palindrome structure derived from the BAC clone Cg0031N14 on Dhfr amplification in CHO cells, we constructed plasmids that contain part or the whole junction region of the palindrome structure. The transfected CHO DG44 cells containing part or the whole junction region of the palindrome structure could adapt quickly to high methotrexate (MTX) concentrations. Moreover, the cells containing the whole junction region of the palindrome structure showed a high ratio of GFP-positive cells during gene amplification. On the basis of these results, we estimated that the junction region plays an important role in gene amplification in CHO cells.  相似文献   

17.
Common fragile sites are chromosomal loci prone to breakage and rearrangement that can be induced by aphidicolin, an inhibitor of DNA polymerases. Within these loci, sites of preferential DNA breaks were proposed to correlate with peaks of enhanced DNA flexibility, the function of which remains elusive. Here we show that mammalian DNA replication origins are enriched in peaks of enhanced flexibility. This finding suggests that the search for these features may help in the mapping of replication origins, and we present evidence supporting this hypothesis. The association of peaks of flexibility with replication origins also suggests that some origins may associate with minor levels of fragility. As shown here, an increased sensitivity to aphidicolin was found near two mammalian DNA replication origins.  相似文献   

18.
19.
Initiation of DNA synthesis occurs with high frequency at oriß, a region of DNA from the amplified dihydrofolate reductase (DHFR) domain of Chinese hamster CHOC 400 cells that contains an origin of bidirectional DNA replication (OBR). Recently, sequences from DHFR oriß/OBR were shown to stimulate amplification of cis-linked plasmid DNA when transfected into murine cells. To test the role of oriß/OBR in chromosomal gene amplification, linearized plasmids containing these sequences linked to a DHFR expression cassette were introduced into DHFR- CHO DUKX cells. After selection for expression of DHFR, cell lines that contain a single integrated, unrearranged copy of the linearized expression plasmid were identified and exposed to low levels of the folate analog, methotrexate (MTX). Of seven clonal cell lines containing the vector control, three gained resistance to MTX by 5 to 15-fold amplification of the integrated marker gene. Of 16 clonal cell lines that contained oriß/OBR linked to a DHFR mini-gene, only 6 gained resistance to MTX by gene amplification. Hence, sequences from the DHFR origin region that stimulate plasmid DNA amplification do not promote amplification of an integrated marker gene in all chromosomal contexts. In addition to showing that chromosomal position has a strong influence on the frequency of gene amplification, these studies suggest that the mechanism that mediates the experiment of episomal plasmid DNA does not contribute to the early steps of chromosomal gene amplification.  相似文献   

20.
Vincristine-resistant (VCR) Chinese hamster ovary (CHO) cells have been established by stepwise selection in increasing concentrations of vincristine. These cells exhibit multidrug cross-resistance to a number of drugs that have no structural or functional similarities. Cytogenetic analyses of resistant cells revealed the presence of double minutes and expanded chromosomal segments, thus implicating gene amplification as a possible mechanism of resistance. An amplified DNA segment isolated from other multidrug cross-resistant CHO cell lines (Roninson, I. B., H. T. Abelson, D. E. Housman, N. Howell, and A. Varshavsky, 1984, Nature (Lond.), 309:626-628) is also amplified in our VCR lines. This DNA segment was used as a probe to screen a cosmid library of VCR genomic DNA, and overlapping clones were retrieved. All of these segments, totaling approximately 45 kilobases (kb), were amplified in VCR cells. Using in situ hybridization, we localized the amplification domain to the long arm of CHO chromosome 1 or Z1. Northern hybridization analysis revealed that a 4.3-kb mRNA was encoded by this amplified DNA domain and was over-produced in the VCR cells. Suggestions for the involvement of these amplified DNA segments in the acquisition of multidrug cross-resistance in animal cells are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号