首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iridoviruses (IVs) are classified into five genera: Iridovirus and Chloriridovirus, whose members infect invertebrates, and Ranavirus, Lymphocystivirus, and Megalocytivirus, whose members infect vertebrates. Until now, Chloriridovirus was the only IV genus for which a representative and complete genomic sequence was not available. Here, we report the genome sequence and comparative analysis of a field isolate of Invertebrate iridescent virus type 3 (IIV-3), also known as mosquito iridescent virus, currently the sole member of the genus Chloriridovirus. Approximately 20% of the 190-kbp IIV-3 genome was repetitive DNA, with DNA repeats localized in 15 apparently noncoding regions. Of the 126 predicted IIV-3 genes, 27 had homologues in all currently sequenced IVs, suggesting a genetic core for the family Iridoviridae. Fifty-two IIV-3 genes, including those encoding DNA topoisomerase II, NAD-dependent DNA ligase, SF1 helicase, IAP, and BRO protein, are present in IIV-6 (Chilo iridescent virus, prototype species of the genus Iridovirus) but not in vertebrate IVs, likely reflecting distinct evolutionary histories for vertebrate and invertebrate IVs and potentially indicative of genes that function in aspects of virus-invertebrate host interactions. Thirty-three IIV-3 genes lack homologues in other IVs. Most of these encode proteins of unknown function but also encode IIV3-053L, a protein with similarity to DNA-dependent RNA polymerase subunit 7; IIV3-044L, a putative serine/threonine protein kinase; and IIV3-080R, a protein with similarity to poxvirus MutT-like proteins. The absence of genes present in other IVs, including IIV-6; the lack of obvious colinearity with any sequenced IV; the low levels of amino acid identity of predicted proteins to IV homologues; and phylogenetic analyses of conserved proteins indicate that IIV-3 is distantly related to other IV genera.  相似文献   

2.
A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely, EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease.  相似文献   

3.
Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential 'accessory' genes for nitrogen fixation (nif), nodulation and host specificity (nod). A related bacterium, psyllid-vectored 'Ca. Liberibacter asiaticus,' is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the 'Ca. Liberibacter asiaticus' genome. Only two 'Ca. Liberibacter asiaticus' proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na(+)/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea) and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and 'Ca. Liberibacter asiaticus' orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤ E-10) with 'Ca. Liberibacter asiaticus' proteins, often present as multiple orthologs of single 'Ca. Liberibacter asiaticus' proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational analysis and is consistent with the hypothesis that these proteins may be of particular importance in host/microbe interaction and their duplication likely facilitates their ongoing evolution.  相似文献   

4.
Mosquito iridescent viruses (MIV) are members of the genus Chloriridovirus that currently contains only the type IIV-3 from Aedestaeniorhynchus. The complete genome of invertebrate iridescent virus -3 (IIV-3) has been sequenced and the availability of a tissue culture system would facilitate functional genomic studies. This investigation, using quantitative PCR and electron microscopy, has determined that the mosquito cell lines Aedes aegypti (Aag2), Aedes albopictus (C6/36) and Anopheles gambiae (4a3A) as well as the lepidopteran cell line from Spodoptera frugiperda (SF9) are permissive to IIV-3 infection. However, IIV-3 infection remained longer in Aag2 and C6/36 cells. Virus produced in C6/36 cell line was infectious to larvae of A. taeniorhynchus by injection and per os. Ultrastructural examination of 4a3A and SF9 cells infected with IIV-3 revealed an unusual feature, where virions were localized to mitochondria. It is speculated that containment with mitochondria may play a role in the lack of persistence in these cell lines.  相似文献   

5.
Phage 812 is a polyvalent phage with a very broad host range in the genus Staphylococcus, which makes it a suitable candidate for phage therapy of staphylococcal infections. This proteomic study, combining the results of both 1-DE and 2-DE followed by PMF, led to the identification of 24 virion proteins. Twenty new proteins, not yet identified by proteome analysis of closely related staphylococcal phages K and G1 were identified using this approach. Fifteen proteins were assigned unambiguously to the head-tail genome module; the remaining nine proteins are encoded by genes of the left or right arms of the phage genome. As expected, the most abundant proteins in the electrophoretic patterns are the major capsid protein, the major tail sheath protein and proteins identical to ORF 50 and ORF 95 of phage K, although their function is only putative. Identification of these 20 new proteins contributes substantially to a detailed characterization of phage virions, knowledge of which is necessary for rational phage therapy.  相似文献   

6.
Comparative analyses of genome structure and sequence of closely related species have yielded insights into the evolution and function of plant genomes. A total of 103,844 BAC end sequences delegated -73.8 Mb of O. officinalis that belongs to the CC genome type of the rice genus Oryza were obtained and compared with the genome sequences office cultivar, O. sativa ssp.japonica cv. Nipponbare. We found that more than 45% of O. officinalis genome consists of repeat sequences, which is higher than that of Nipponbare cultivar. To further investigate the evolutionary divergence of AA and CC genomes, two BAC-contigs of O. officinalis were compared with the collinear genomic regions of Nipponbare. Of 57 genes predicted in the AA genome orthologous regions, 39 had orthologs in the regions of the CC genome. Alignment of the orthologous regions indicated that the CC genome has undergone expansion in both genic and intergenic regions through primarily retroelement insertion. Particularly, the density of RNA transposable elements was 17.95% and 1.78% in O. officinalis and O. sativa, respectively. This explains why the orthologous region is about 100 kb longer in the CC genome in comparison to the AA genome.  相似文献   

7.
8.
9.
为确定红锥(Castanopsis hystrix)叶绿体基因组的结构组成情况,判定其在锥属中的进化位置及与同锥属叶绿体基因组的区别,为锥属物种鉴定、遗传多样性分析和资源保护提供相关依据。使用Illumina HiSeq 2500测序平台对红锥叶绿体基因组进行测序,通过生物信息学分析方法进行序列组装、注释和特征分析,并利用R、Python、MISA、CodonW和MEGA 6等生物信息学软件对其基因组结构和数目、密码子偏好性、序列重复、简单重复序列(simple sequence repeat,SSR)位点和系统发育进行分析。结果表明红锥叶绿体基因组大小为153754 bp,呈现四分体结构;共拥有130个基因,包含85个编码基因、37个tRNA基因和8个rRNA基因;通过密码子偏好性分析,平均有效密码子数为55.5,说明其密码子随机性强、偏好性低;通过SSR及长重复片段分析,检测到45个重复序列及111个SSR位点;与近缘种比较,发现其叶绿体基因组序列高度保守,尤其蛋白质编码序列相似度极高;此外,系统发育分析发现红锥与海南锥聚为一支,关系密切。本研究得到了红锥的叶绿体基因组基本情况与系统发育位置,为红锥的物种辨别、天然种群遗传多样性与功能基因组学提供前期研究铺垫。  相似文献   

10.
Burton RS  Byrne RJ  Rawson PD 《Gene》2007,403(1-2):53-59
Previous work on the harpacticoid copepod Tigriopus californicus has focused on the extensive population differentiation in three mtDNA protein coding genes (COXI, COXII, Cytb). In order to get a more complete understanding of mtDNA evolution in this species, we sequenced three complete mitochondrial genomes (one from each of three California populations) and compared them to two published mtDNA genomes from an Asian congener, Tigriopus japonicus. Several features of the mtDNA genome appear to be conserved within the genus: 1) the unique order of the protein coding genes, rRNA genes and most of the tRNA genes, 2) the genome is compact, varying between 14.3 and 14.6 kb, and 3) all genes are encoded on the same strand of the mtDNA. Within T. californicus, extremely high levels of nucleotide divergence (>20%) are observed across much of the mitochondrial genome. Inferred amino acid sequences of the proteins encoded in the mtDNAs also show high levels of divergence; at the extreme, the three ND3 variants in T. californicus showed >25% amino acid substitutions, compared with <3% amino acid divergence at the previously studied COXI locus. Unusual secondary structures make functional assignments of some tRNAs difficult. The only apparent tRNA(trp) in these genomes completely overlaps the 5' end of the 16S rRNA in all three T. californicus mtDNAs. Although not previously noted, this feature is also conserved in T. japonicus mtDNAs; whether this sequence is processed into a functional tRNA has not been determined. The putative control region contains a duplicated segment of different length (from 88 to 155 bp) in each of the T. californicus sequences. In each case, the duplicated segments are not tandem repeats; despite their different lengths, the distance between the start of the first and the start of the second repeat is conserved (520 bp). The functional significance, if any, of this repeat structure remains unknown.  相似文献   

11.
Since the mid-1990s, lethal infections of koi herpesvirus (KHV) have been spreading, threatening the worldwide production of common carp and koi (both Cyprinus carpio). The complete genome sequences of three KHV strains from Japan, the United States, and Israel revealed a 295-kbp genome containing a 22-kbp terminal direct repeat. The finding that 15 KHV genes have clear homologs in the distantly related channel catfish virus (ictalurid herpesvirus 1) confirms the proposed place of KHV in the family Herpesviridae, specifically in the branch with fish and amphibian hosts. KHV thus has the largest genome reported to date for this family. The three strains were interpreted as having arisen from a wild-type parent encoding 156 unique protein-coding genes, 8 of which are duplicated in the terminal repeat. In each strain, four to seven genes from among a set of nine are fragmented by frameshifts likely to render the encoded proteins nonfunctional. Six of the affected genes encode predicted membrane glycoproteins. Frameshifts or other mutations close to the 3' ends of coding sequences were identified in a further six genes. The conclusion that at least some of these mutations occurred in vivo prompts the hypothesis that loss of gene functions might be associated with emergence of the disease and provides a basis for further investigations into the molecular epidemiology of the virus.  相似文献   

12.
Short regularly spaced repeats (SRSRs) occur in multiple large clusters in archaeal chromosomes and as smaller clusters in some archaeal conjugative plasmids and bacterial chromosomes. The sequence, size, and spacing of the repeats are generally constant within a cluster but vary between clusters. For the crenarchaeon Sulfolobus solfataricus P2, the repeats in the genome fall mainly into two closely related sequence families that are arranged in seven clusters containing a total of 441 repeats which constitute ca. 1% of the genome. The Sulfolobus conjugative plasmid pNOB8 contains a small cluster of six repeats that are identical in sequence to one of the repeat variants in the S. solfataricus chromosome. Repeats from the pNOB8 cluster were amplified and tested for protein binding with cell extracts from S. solfataricus. A 17.5-kDa SRSR-binding protein was purified from the cell extracts and sequenced. The protein is N terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also recognizes both main families of repeat sequences in S. solfataricus. The recombinant protein, expressed in Escherichia coli, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the Sulfolobus genus and in the closely related Acidianus genus. We infer that the genus-specific protein induces an opening of the structure at the center of each DNA repeat and thereby produces a binding site for another protein, possibly a more conserved one, in a process that may be essential for higher-order stucturing of the SRSR clusters.  相似文献   

13.
The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus.  相似文献   

14.
四合木(Tetraena mongolica)是我国特有的蒺藜科(Zygophyllaceae)强旱生小灌木,因其起源古老、抗逆性强,所以可作为生物多样性起源和环境演变研究的理想对象,具有重要的学术研究价值。本研究采用Illumina双末端测序技术对四合木叶绿体基因组进行建库测序和分析。选取蒺藜目及牻牛儿苗目共计30个物种叶绿体基因组,与四合木进行系统发育关系分析探讨。结果表明:四合木叶绿体基因组长度为106259bp,其中反向重复区(IR区中)有7种基因,包括4种PCG基因,3种tRNA基因。叶绿体基因组共编码98种基因,包括65种蛋白编码基因、29种tRNA基因与4种rRNA基因。生物信息学表明,在四合木中共搜到92个SSR位点,其中包括74个单核苷酸重复基序,7个二核苷酸重复基序,1个三核苷酸重复基序,9个四核苷酸重复基序和1个五核苷酸基序。没有发现六核苷酸,其中单核苷酸重复在四合木的叶绿体基因组SSR中占比为80.1%。通过MEGA软件采用近邻结合法(neighbor-joining,NJ)对四合木等31个物种的叶绿体基因组进行聚类分析,发现四合木与蒺藜科三齿拉雷亚灌木为最近的姐妹种,其次为牻牛儿苗科智利白桦植物亲缘关系较近,与牻牛儿苗科天竺葵属和牻牛儿苗科高桂花属亲缘关系最远,说明四合木属于蒺藜科物种,这对于四合木的研究等具有一定的参考价值。  相似文献   

15.
A total of 37 complete genome sequences of bacteria, archaea, and eukaryotes were compared. The percentage of orthologous genes of each species contained within any of the other 36 genomes was established. In addition, the mean identity of the orthologs was calculated. Several conclusions result: (i) a greater absolute number of orthologs of a given species is found in larger species than in smaller ones; (ii) a greater percentage of the orthologous genes of smaller genomes is contained in other species than is the case for larger genomes, which corresponds to a larger proportion of essential genes; (iii) before species can be specifically related to one another in terms of gene content, it is first necessary to correct for the size of the genome; (iv) eukaryotes have a significantly smaller percentage of bacterial orthologs after correction for genome size, which is consistent with their placement in a separate domain; (v) the archaebacteria are specifically related to one another but are not significantly different in gene content from the bacteria as a whole; (vi) determination of the mean identity of all orthologs (involving hundreds of gene comparisons per genome pair) reduces the impact of errors in misidentification of orthologs and to misalignments, and thus it is far more reliable than single gene comparisons; (vii) however, there is a maximum amount of change in protein sequences of 37% mean identity, which limits the use of percentage sequence identity to the lower taxa, a result which should also be true for single gene comparisons of both proteins and rRNA; (viii) most of the species that appear to be specifically related based upon gene content also appear to be specifically related based upon the mean identity of orthologs; (ix) the genes of a majority of species considered in this study have diverged too much to allow the construction of all-encompassing evolutionary trees. However, we have shown that eight species of gram-negative bacteria, six species of gram-positive bacteria, and eight species of archaebacteria are specifically related in terms of gene content, mean identity of orthologs, or both.  相似文献   

16.
17.
We have isolated cDNAs for four human genes (DPDE1 through DPDE4) closely related to the dnc learning and memory locus of Drosophila melanogaster. The deduced amino acid sequences of the Drosophila and human proteins have considerable homology, extending beyond the putative catalytic region to include two novel, highly conserved, upstream conserved regions (UCR1 and UCR2). The upstream conserved regions are located in the amino-terminal regions of the proteins and appear to be unique to these genes. Polymerase chain reaction analysis suggested that these genes encoded the only homologs of dnc in the human genome. Three of the four genes were expressed in Saccharomyces cerevisiae and shown to encode cyclic AMP-specific phosphodiesterases. The products of the expressed genes displayed the pattern of sensitivity to inhibitors expected for members of the type IV, cyclic AMP-specific class of phosphodiesterases. Each of the four genes demonstrated a distinctive pattern of expression in RNA from human cell lines.  相似文献   

18.
The NADH:ubiquinone oxidoreductase of the mitochondrial respiratory chain is a large multisubunit complex in eukaryotes containing 30-40 different subunits. Analysis of this complex using blue-native gel electrophoresis coupled to tandem mass spectrometry (MS) has identified a series of 30 different proteins from the model dicot plant, Arabidopsis, and 24 different proteins from the model monocot plant, rice. These proteins have been linked back to genes from plant genome sequencing and comparison of this dataset made with predicted orthologs of complex I components in these plants. This analysis reveals that plants contain the series of 14 highly conserved complex I subunits found in other eukaryotic and related prokaryotic enzymes and a small set of 9 proteins widely found in eukaryotic complexes. A significant number of the proteins present in bovine complex I but absent from fungal complex I are also absent from plant complex I and are not encoded in plant genomes. A series of plant-specific nuclear-encoded complex I associated subunits were identified, including a series of ferripyochelin-binding protein-like subunits and a range of small proteins of unknown function. This represents a post-genomic and large-scale analysis of complex I composition in higher plants.  相似文献   

19.
Fossil records indicate that life appeared in marine environments ~3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that "hydrobacteria" and "terrabacteria" might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.  相似文献   

20.
The ABC superfamily of genes is one of the largest in the genomes of both bacteria and eukaryotes. The proteins encoded by these genes all carry a characteristic 200- to 250-amino-acid ATP-binding cassette that gives them their family name. In bacteria they are mostly involved in nutrient import, while in eukaryotes many are involved in export. Seven different families have been defined in eukaryotes based on sequence homology, domain topology, and function. While only 6 ABC genes in Dictyostelium discoideum have been studied in detail previously, sequences from the well-advanced Dictyostelium genome project have allowed us to recognize 68 members of this superfamily. They have been classified and compared to animal, plant, and fungal orthologs in order to gain some insight into the evolution of this superfamily. It appears that many of the genes inferred to have been present in the ancestor of the crown organisms duplicated extensively in some but not all phyla, while others were lost in one lineage or the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号