首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective : The contribution of basal metabolic rate (BMR) to weight gain susceptibility has long been debated. We wanted to examine whether BMR changes in a linear fashion with overfeeding. Our hypothesis was that BMR does not increase linearly with 1000‐kcal/d overfeeding in lean healthy subjects over 8 weeks. The null hypothesis states that BMR increases linearly with 1000‐kcal/d overfeeding in lean healthy subjects. Research Methods and Procedures : Initially, 16 lean healthy sedentary subjects completed 2 weeks of weight maintenance feeding at the General Clinical Research Center. The subjects were then overfed by 1000 kcal/d over 8 weeks. BMR was measured under standard conditions each week using indirect calorimetry. Results : Baseline BMR was 1693 ± 154.5 kcal/d. BMR increased from 1711 ± 201.3 kcal/d at week 1 of overfeeding to 1781 ± 171.65 kcal/d at the second week of overfeeding (p = 0.05). BMR fell during the third week of overfeeding to 1729 ± 179.5 kcal/d (p = 0.05). After 5 weeks of overfeeding, BMR reached a plateau. Thereafter, there was no further change. Comparison of BMR with weeks of overfeeding was significantly different compared with the linear model (p < 0.05). Discussion : Increases in BMR in lean sedentary healthy subjects with 1000‐kcal/d overfeeding are not linear over 8 weeks. There seems to be a short‐term increase in BMR in the first 2 weeks of overfeeding that is not representative of longer‐term changes.  相似文献   

2.
By incubating the isolated rat myocardial mitochondria with xanthine-xanthine oxidase, anexogenous superoxide (O2) generating system, and by ischemia-reperfusion procedure of isolated rat heart as an endogenous O2 generating system, it was found that both sources of O2 showed the same injurious effects on mitochondrial function resulting in (i) increasing proton leak rate, lowering proton pumping activity and Ht/2e ratio of respiratory chain, and (ii) decreasing transmembrane potential of energized mitochondria] inner membrane by succinate oxidation. The injurious effects of O2 on these mitochondrial bioenergitical parameters mentioned above exhibited a dosage- or reaction time-dependent mode. (X has no effects on the electron transfer activity and transmembrane potential of nonenergized mitochondria. Being a superoxide scavenger, 3, 4-dihydroxylphenyl lactate showed obvious protection effects against damage of both exogenous superoxide sources from xanthine-xanthine oxidase system and endogenous Or sou  相似文献   

3.
This study tested an emergent prediction from the Metabolic Theory of Ecology (MTE) that the age at first reproduction (α) of a mammal is proportional to the inverse of its mass-corrected basal metabolic rate: The hypothesis was tested with multiple regression models of conventional species data and phylogenetically independent contrasts of 121 mammal species. Since age at first reproduction is directly influenced by an individual’s growth rate, the hypothesis that growth rate is proportional to BMR was also tested. Although the overall multiple regression model was significant, age at first reproduction was not partially correlated with either body mass, growth rate or BMR. Similarly, growth rate was not correlated with BMR. Thus at least for mammals in general, there is no evidence to support the fundamental premise of the MTE that individual metabolism governs the rate at which energy is converted to growth and reproduction at the species level. The exponents of the BMR allometry calculated using phylogenetic generalized least squares regression models were significantly lower than the three-quarter value predicted by the MTE. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The question of why we age and finally die has been a central subject in the life, medical, and health sciences. Many aging theories have proposed biomarkers that are related to aging. However, they do not have sufficient power to predict the aging process and longevity. We here propose a new biomarker of human aging based on the mass‐specific basal metabolic rate (msBMR). It is well known by the Harris–Benedict equation that the msBMR declines with age but varies among individual persons. We tried to renormalize the msBMR by primarily incorporating the body mass index into this equation. The renormalized msBMR (RmsBMR) which was derived in one cohort of American men (n = 25,425) was identified as one of the best biomarkers of aging, because it could well reproduce the observed respective American, Italian, and Japanese data on the mortality rate and survival curve. A recently observed plateau of the mortality rate in centenarians corresponded to the lowest value (threshold) of the RmsBMR, which stands for the final stage of human life. A universal decline of the RmsBMR with age was associated with the mitochondrial number decay, which was caused by a slight fluctuation of the dynamic fusion/fission system. This decay form was observed by the measurement in mice. Finally, the present approach explained the reason why the BMR in mammals is regulated by the empirical algometric scaling law.  相似文献   

5.
The basal metabolic rate (BMR) of mice losing weight about two weeks after infection by Nematospiroides dubius was lower than that of uninfected mice gaining weight when fed ad libitum or losing weight on quantitatively reduced rations. There was no difference in BMR between the latter two groups.Following the injection of 14C-glucose, the high specific activity of expired CO2 from infected and reduced ration mice was considered to be due to the utilization of energy reserves. The levels of lipid and liver glycogen were low in these two groups of mice and their specific activities, particularly in the severely affected animals, were high.It was concluded that the depressed BMR of infected mice is unrelated to anorexia, which did, however, explain the low levels of lipid and liver glycogen.  相似文献   

6.
Despite evidence that some individuals achieve both superiorreproductive performance and high survivorship, the factorsunderlying variation in individual quality are not well understood.The compensation and increased-intake hypotheses predict thatbasal metabolic rate (BMR) influences reproductive performance;if so, variation in BMR may be related to differences in individualquality. We evaluated whether BMR measured during the incubationperiod provides a proximate explanation for variation in individualquality by measuring the BMRs and reproductive performance ofLeach's storm-petrels (Oceanodroma leucorhoa) breeding on KentIsland, New Brunswick, Canada, during 2000 and 2001. We statisticallycontrolled for internal (body mass, breeding age, sex) and external(year, date, time of day) effects on BMR. We found that maleswith relatively low BMRs hatched their eggs earlier in the seasonand that their chicks' wing growth rates were faster comparedto males with relatively high BMRs. Conversely, BMR was notrelated to egg volume, hatching date, or chick growth rate forfemales or to lifetime (23 years) hatching success for eithersex. Thus, for males but not for females, our results supportthe compensation hypothesis. This hypothesis predicts that animalswith low BMRs will achieve better reproductive performance thananimals with high BMRs because they have lower self-maintenancecosts and therefore can apportion more energy to reproduction.These results provide evidence that intraspecific variationin reproductive performance is related to BMR and suggest thatBMR may influence individual quality in males.  相似文献   

7.
The aerobic capacity model postulates that high basal metabolic rates (BMR) underlying endothermy evolved as a correlated response to the selection on maximal levels of oxygen consumption () associated with locomotor activity. The recent assimilation capacity model specifically assumes that high BMR evolved as a by‐product of the selection for effective parental care, which required long‐term locomotor activity fuelled by energy assimilated from food. To test both models, we compared metabolic and behavioural correlates in males of laboratory mice divergently selected on body mass‐corrected BMR. elicited by running on the treadmill did not differ between selection lines, which points to the lack of genetic correlation between BMR and . In contrast, there was a positive, genetic correlation between spontaneous long‐term locomotor activity, food intake and BMR. Our results therefore corroborate predictions of the assimilation capacity model of endothermy evolution.  相似文献   

8.
9.
An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed ‘common garden’ population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb, but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.  相似文献   

10.
I wanted to follow the correlation between level of basal metabolic rate (BMR) and maximum response to injection of noradrenaline (MMRNA) in two lines of laboratory mice subjected to divergent, artificial selection toward high BMR (HBMR) and low BMR (LBMR). HBMR animals had heavier visceral organs (heart, liver, kidney, intestine), but their regulatory NST (MMRNA–BMR) was lower and interscapular brown adipose tissue (IBAT) lighter than in LBMR mice. Obligatory part of nonshivering thermogenesis (NST) (in other words BMR) depended on visceral organ mass, whereas regulatory NST correlates with mass of IBAT. BMR was not correlated with total NST capacity, but phenotypic correlation between obligatory and regulatory NST was negative. This suggests possibility of substitution of obligatory NST to thermoregulation in a place of the regulatory NST. Then total thermoregulatory energy expenditures do not change.  相似文献   

11.
Basal metabolic rate (BMR) constitutes the minimal metabolic rate in the zone of thermo‐neutrality, where heat production is not elevated for temperature regulation. BMR thus constitutes the minimum metabolic rate that is required for maintenance. Interspecific variation in BMR in birds is correlated with food habits, climate, habitat, flight activity, torpor, altitude, and migration, although the selective forces involved in the evolution of these presumed adaptations are not always obvious. I suggest that BMR constitutes the minimum level required for maintenance, and that variation in this minimum level reflects the fitness costs and benefits in terms of ability to respond to selective agents like predators, implying that an elevated level of BMR is a cost of wariness towards predators. This hypothesis predicts a positive relationship between BMR and measures of risk taking such as flight initiation distance (FID) of individuals approached by a potential predator. Consistent with this suggestion, I show in a comparative analysis of 76 bird species that species with higher BMR for their body mass have longer FID when approached by a potential predator. This effect was independent of potentially confounding variables and similarity among species due to common phylogenetic descent. These results imply that BMR is positively related to risk‐taking behaviour, and that predation constitutes a neglected factor in the evolution of BMR.  相似文献   

12.
Aside from the pervasive effects of body mass, much controversy exists as to what factors account for interspecific variation in basal metabolic rates (BMR) of mammals; however, both diet and phylogeny have been strongly implicated. We examined variation in BMR within the New World bat family Phyllostomidae, which shows the largest diversity of food habits among mammalian families, including frugivorous, nectarivorous, insectivorous, carnivorous and blood-eating species. For 27 species, diet was taken from the literature and BMR was either measured on animals captured in Brazil or extracted from the literature. Conventional (nonphylogenetic) analysis of covariance (ANCOVA), with body mass as the covariate, was first used to test the effects of diet on BMR. In this analysis, which assumes that all species evolved simultaneously from a single ancestor (i.e., a "star" phylogeny), diet exerted a strong effect on mass-independent BMR: nectarivorous bats showed higher mass-independent BMR than other bats feeding on fruits, insects or blood. In phylogenetic ANCOVAs via Monte Carlo computer simulation, which assume that species are part of a branching hierarchical phylogeny, no statistically significant effect of diet on BMR was observed. Hence, results of the nonphylogenetic analysis were misleading because the critical values for testing the effect of diet were underestimated. However, in this sample of bats, diet is perfectly confounded with phylogeny, because the four dietary categories represent four separate subclades, which greatly reduces statistical power to detect a diet (= subclade) effect. But even if diet did appear to exert an influence on BMR in this sample of bats, it would not be logically possible to separate this effect from the possibility that the dietary categories differ for some other reason (i.e., another synapomorphy of one or more of the subclades). Examples such as this highlight the importance of considering phylogenetic relationships when designing new comparative studies, as well as when analyzing existing data sets. We also discuss some possible reasons why BMR may not coadapt with diet.  相似文献   

13.
Alien predators can have large impacts on prey. It is important that we understand, and ideally predict, these impacts. Here, we compare predatory impacts of size-matched decapod crustaceans—invasive alien Eriocheir sinensis and Pacifastacus leniusculus, and native European Austropotamobius pallipes—and use this case study to inform methods for impact prediction. We quantify functional responses (FRs) on three macroinvertebrate prey species, examine switching behaviour, and measure metabolic rates as a possible mechanistic explanation for differences in predation. FRs show a consistent pattern: attack coefficients and maximum feeding rates are ordered E. sinensis?≥?P. leniusculus?≥?A. pallipes for all prey species. Attack coefficients of E. sinensis are up to 6.7 times greater than those of size-matched crayfish and maximum feeding rates up to 3.0 times greater. FR parameters also differ between the invasive and native crayfish, but only up to 2.6 times. We find no evidence of switching behaviour in crayfish but suggestions of negative switching in E. sinensis. Differences in FR parameters are mirrored by differences in routine, but not standard, metabolic rate. Overall, our data predict strong predatory impacts of E. sinensis, even relative to alien P. leniusculus. Strong impacts of P. leniusculus relative to A. pallipes may be driven more by body size or abundance than per capita effect. FRs vary between prey types in line with existing knowledge of impacts, supporting the use of FRs in quantitative, prey-specific impact predictions. MRs could offer a general mechanistic explanation for differences in predatory behaviour and impacts.  相似文献   

14.
The aim of this study was to evaluate the role of mitochondria in the recovery of cardiac energetics induced by ischaemic preconditioning at reperfusion. Isolated rat hearts were aerobically perfused (control), subjected to global ischaemia and reperfusion (reperfusion), or subjected to 3 brief cycles of ischaemia/reperfusion and then to the protocol of reperfusion (preconditioning). At the end of the perfusion, antimycin A was delivered to the heart for 25 min, to inhibit mitochondrial respiration and stimulate glycolysis. The increased amount of lactate released in the coronary effluent was correlated with the number of viable cells producing this end-product of glycolysis. Preconditioned hearts released 18% more lactate than reperfused hearts (p < 0.05). This result indicates that preconditioning partially preserved cell viability, as was also evidenced by the MTT assay performed on cardiac biopsies. The difference between antimycin A-stimulated and basal lactate concentration, representing the contribution of mitochondria to the overall energetics of cardiac tissue, was also 18% more elevated in the preconditioned hearts than in the reperfused hearts (p < 0.01). The study of the respiratory function of mitochondria isolated at the end of perfusion, showed that preconditioning did not improve the oxygen-dependent production of ATP (state 3 respiration, ADP/O). On the contrary, state 4 respiration, which is related to proton leakage, was 35.0% lower in the preconditioned group than reperfusion group (p < 0.05). Thus, preconditioning ameliorates cardiac energetics by preserving cell death, but without affecting mitochondrial oxidative phosphorylation. Mitochondria can contribute to cell survival by the attenuation of proton leak from inner membrane.  相似文献   

15.
A growing body of research supports the view that within‐species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuclear introgression lines, we assess differences in whole‐organism metabolic rate of adult Drosophila subobscura fruit flies carrying either of three different sympatric mtDNA haplotypes. We document sizeable, up to 20%, differences in metabolic rate across these mtDNA haplotypes. Further, these mtDNA effects are to some extent sex specific. We found no significant nuclear or mitonuclear genetic effects on metabolic rate, consistent with a low degree of linkage disequilibrium between mitochondrial and nuclear genes within populations. The fact that mtDNA haplotype variation within a natural population affects metabolic rate, which is a key physiological trait with important effects on life‐history traits, adds weight to the emergent view that mtDNA haplotype variation is under natural selection and it revitalizes the question as to what processes act to maintain functional mtDNA polymorphism within populations.  相似文献   

16.
Quantitative genetic analyses of basal metabolic rate (BMR) can inform us about the evolvability of the trait by providing estimates of heritability, and also of genetic correlations with other traits that may constrain the ability of BMR to respond to selection. Here, we studied a captive population of zebra finches (Taeniopygia guttata) in which selection lines for male courtship rate have been established. We measure BMR in these lines to see whether selection on male sexual activity would change BMR as a potentially correlated trait. We find that the genetic correlation between courtship rate and BMR is practically zero, indicating that the two traits can evolve independently of each other. Interestingly, we find that the heritability of BMR in our population (h2=0.45) is markedly higher than was previously reported for a captive zebra finch population from Norway. A comparison of the two studies shows that additive genetic variance in BMR has been largely depleted in the Norwegian population, especially the genetic variance in BMR that is independent of body mass. In our population, the slope of BMR increase with body mass differs not only between the sexes but also between the six selection lines, which we tentatively attribute to genetic drift and/or founder effects being strong in small populations. Our study therefore highlights two things. First, the evolvability of BMR may be less constrained by genetic correlations and lack of independent genetic variation than previously described. Second, genetic drift in small populations can rapidly lead to different evolvabilities across populations.  相似文献   

17.
Diet quality can influence many aspects of digestion, but the links between diet quality and resting metabolism are poorly understood. In nature, it might be beneficial to reduce energy expenditure when only poor quality diets are available. Alternatively, animals might increase the processing capacity of the gut to more thoroughly extract energy. If maintaining the processing capacity of the gut is energetically expensive, then increasing gut size or function might result in higher resting metabolism. In ectotherms, most digestive functions are temperature dependent, thus another strategy to maintain energy balance might be to alter selected body temperatures. We tested whether differing concentrations of dietary fiber affected the resting metabolic rate or body temperatures selected by chuckwallas (Sauromalus obesus) – lizards that naturally experience marked variation in dietary fiber. Resting metabolic rates measured at two temperatures and over three time intervals did not differ between groups of lizards force-fed low- (30% neutral-detergent fiber; NDF) and high-fiber (45% NDF) diets, nor did these diet differences influence body temperatures selected in a thermal gradient. We conclude that ecologically relevant differences in diet quality may have negligible effects on resting metabolic rates and body temperatures selected by chuckwallas. Accepted: 5 January 1998  相似文献   

18.
It is colloquially stated that body size plays a role in the human response to cold, but the magnitude and details of this interaction are unclear. To explore the inherent influence of body size on cold-exposed metabolism, we investigated the relation between body composition and resting metabolic rate in humans at thermoneutrality and during cooling within the nonshivering thermogenesis range. Body composition and resting energy expenditure were measured in 20 lean and 20 overweight men at thermoneutrality and during individualized cold exposure. Metabolic rates as a function of ambient temperature were investigated considering the variability in body mass and composition. We observed an inverse relationship between body size and the lower critical temperature (LCT), i.e. the threshold where thermoneutrality ends and cold activates thermogenesis. LCT was higher in lean than overweight subjects (22.1 ± 0.6 vs 19.5 ± 0.5 °C, p < 0.001). Below LCT, minimum conductance was identical between lean and overweight (100 ± 4 vs 97 ± 3 kcal/°C/day respectively, p = 0.45). Overweight individuals had higher basal metabolic rate (BMR) explained mostly by the higher lean mass, and lower cold-induced thermogenesis (CIT) per degree of cold exposure. Below thermoneutrality, energy expenditure did not scale to lean body mass. Overweight subjects had lower heat loss per body surface area (44.7 ± 1.3 vs 54.7 ± 2.3 kcal/°C/m2/day, p < 0.001). We conclude that larger body sizes possessed reduced LCT as explained by higher BMR related to more lean mass rather than a change in whole-body conductance. Thus, larger individuals with higher lean mass need to be exposed to colder temperatures to activate CIT, not because of increased insulation, but because of a higher basal heat generation. Our study suggests that the distinct effects of body size and composition on energy expenditure should be taken in account when exploring the metabolism of humans exposed to cold.  相似文献   

19.
Diabetes mellitus (DM) is a multi-factorial disease which is characterized by hyperglycaemia, lipoprotein abnormalities and oxidative stress. This study evaluated effect of oral vitamin C administration on basal metabolic rate and lipid profile of alloxan-induced diabetic rats. Vitamin C was administered at 200 mg/kg body wt. by gavage for four weeks to diabetic rats after which the resting metabolic rate and plasma lipid profile was determined. The results showed that vitamin C administration significantly (P<0.01) reduced the resting metabolic rate in diabetic rats; and also lowered plasma triglyceride, total cholesterol and low-density lipoprotein cholesterol. These results suggest that the administration of vitamin C in this model of established diabetes mellitus might be beneficial for the restoration of basal metabolic rate and improvement of lipid profile. This may at least in part reduce the risk of cardiovascular events seen in diabetes mellitus.  相似文献   

20.
The metabolic rate of roach in relation to body size and temperature   总被引:4,自引:0,他引:4  
Standard and routine metabolic rates of roach Rutilus rutilus for a wide size and temperature range (3–200 g, 5–23° C) were analysed by automated, computerized intermittent flow respirometry. The mass exponent b ranged from 0·68 to 0·82 for standard metabolism, and from 0·65 to 0·92 for routine metabolism depending on the experimental temperature. For routine metabolism b was lowest at 10° C. At both decreasing and increasing temperatures, b increased significantly. Roach were exponentially temperature-dependent for both metabolic levels. For roach <20 g, however, an asymptotic relationship was observed between temperature and routine metabolic rate. The 'flattening of the curve' in the latter case may be explained by reduced spontaneous activities at the lower threshold of the preferred temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号