首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathogenesis of many bacterially-induced inflammatory diseases is driven by Toll-like receptor (TLR) mediated immune responses following recognition of bacterial factors by different TLRs. Periodontitis is a chronic inflammation of the tooth supporting apparatus often leading to tooth loss, and is caused by a Gram-negative bacterial consortium that includes Tannerella forsythia. This bacterium expresses a virulence factor, the BspA, which drives periodontal inflammation by activating TLR2. The N-terminal portion of the BspA protein comprises a leucine-rich repeat (LRR) domain previously shown to be involved in the binding and activation of TLR2. The objective of the current study was to identify specific epitopes in the LRR domain of BspA that interact with TLR2. Our results demonstrate that a sequence motif GC(S/T)GLXSIT is involved in mediating the interaction of BspA with TLR2. Thus, our study has identified a peptide motif that mediates the binding of a bacterial protein to TLR2 and highlights the promiscuous nature of TLR2 with respect to ligand binding. This work could provide a structural basis for designing peptidomimetics to modulate the activity of TLR2 in order to block bacterially-induced inflammation.  相似文献   

2.
Although the pathogenesis of periodontal disease (PD) is not well known, cytokines, chemotactic factors and inflammatory cells are certainly involved in the disease outcome. Here, we characterized the evolution of the PD induced by Actinobacillus actinomycetemcomitans in mice, showing that oral inoculation of these bacteria leads to the migration of leukocytes to periodontal tissues and marked alveolar bone resorption. We found the expression of pro-inflammatory and Th1-type cytokines including TNF-alpha, IFN-gamma and IL-12 in periodontal tissues after infection with A. actinomycetemcomitans, from the early stages after infection and throughout the course of the disease. Similar kinetics of expression were found for the chemokines CCL5, CCL4, CCL3 and CXCL10 and for the receptors CCR5 and CXCR3, all of them linked to the Th1-type pattern. The expression of the Th2-type mediators IL-10, CCL1 and their receptors CCR4 and CCR8 was detected only after 30 days of infection, determining a time-dependent mixed pattern of polarized immune response. The chemokine expression was correlated with the presence of polymorphonuclear leukocytes, macrophages, CD4 and CD8 lymphocytes, and B cells in the inflammatory infiltrate. Interestingly, during the predominance of the Th1-type response, a sharp increase in the number of inflammatory cells and intense bone loss was seen. By contrast, after the increased expression of Th2-type mediators, the number of inflammatory cells remained constant. Our data demonstrate that mice subjected to oral inoculation of A. actinomycetemcomitans represent a useful model for the study of PD. In addition, our results suggest that expression of cytokines and chemokines can drive the selective recruitment of leukocyte subsets to periodontal tissues, which could determine the stable or progressive nature of the lesion.  相似文献   

3.
Periodontal disease is a chronic inflammatory disease in the oral cavity, which culminates in alveolar bone loss. Porphyromonas gingivalis is a consensus periodontal pathogen that has been implicated in adult forms of periodontitis. We previously demonstrated that IL-10-deficient mice exhibit a hyperinflammatory phenotype and are highly susceptible to P. gingivalis-induced periodontitis, indicating an important anti-inflammatory effect of IL-10 in suppressing bone loss. In this study, we analyzed the pathway(s) by which IL-10 deficiency leads to severe P. gingivalis-induced periodontitis. Because Stat3 is essential in IL-10 signaling, immune cell-specific Stat3-deficient mice were subjected to P. gingivalis infection to identify the key IL-10-responsive cells in preventing periodontitis. Myeloid cell-specific Stat3-deficient mice exhibited increased periodontal bone loss (p < 0.001), whereas T cell- and B cell-specific Stat3 mice were resistant, suggesting that macrophages (MP) and/or polymorphonuclear leukocytes are the key target cells normally suppressed by IL-10. Myeloid cell-specific Stat3-deficient mice exhibited elevated gingival CD40L gene expression in vivo compared with wild-type controls (p < 0.01), and Stat3-deficient MPs exhibited vigorous P. gingivalis-stimulated IL-12 production in vitro and induced elevated Ag-specific T cell proliferation compared with wild-type MPs (p < 0.01). Of importance, both IL-12p40/IL-10 and T cell/IL-10 double-deficient mice were resistant to P. gingivalis-induced periodontitis, demonstrating roles for both IL-12p40 and T cells in pathogenesis in a hyperinflammatory model of disease. These data demonstrate that P. gingivalis-induced periodontitis in IL-10-deficient mice is dependent upon IL-12p40-mediated proinflammatory T cell responses.  相似文献   

4.
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.  相似文献   

5.
Effective resolution of malaria infection by avoiding pathogenesis requires regulated pro- to anti-inflammatory responses and the development of protective immunity. TLRs are known to be critical for initiating innate immune responses, but their roles in the regulation of immune responses and development of protective immunity to malaria remain poorly understood. In this study, using wild-type, TLR2(-/-), TLR4(-/-), TLR9(-/-), and MyD88(-/-) mice infected with Plasmodium yoelii, we show that TLR9 and MyD88 regulate pro/anti-inflammatory cytokines, Th1/Th2 development, and cellular and humoral responses. Dendritic cells from TLR9(-/-) and MyD88(-/-) mice produced significantly lower levels of proinflammatory cytokines and higher levels of anti-inflammatory cytokines than dendritic cells from wild-type mice. NK and CD8(+) T cells from TLR9(-/-) and MyD88(-/-) mice showed markedly impaired cytotoxic activity. Furthermore, mice deficient in TLR9 and MyD88 showed higher Th2-type and lower Th1-type IgGs. Consequently, TLR9(-/-) and MyD88(-/-) mice exhibited compromised ability to control parasitemia and were susceptible to death. Our data also show that TLR9 and MyD88 distinctively regulate immune responses to malaria infection. TLR9(-/-) but not MyD88(-/-) mice produced significant levels of both pro- and anti-inflammatory cytokines, including IL-1β and IL-18, by other TLRs/inflammasome- and/or IL-1R/IL-18R-mediated signaling. Thus, whereas MyD88(-/-) mice completely lacked cell-mediated immunity, TLR9(-/-) mice showed low levels of cell-mediated immunity and were slightly more resistant to malaria infection than MyD88(-/-) mice. Overall, our findings demonstrate that TLR9 and MyD88 play central roles in the immune regulation and development of protective immunity to malaria, and have implications in understanding immune responses to other pathogens.  相似文献   

6.
Periodontal disease (PD), a degenerative bacterially induced disease of periodontium, can lead to bone resorption and teeth loss. Development of PD includes a strong inflammatory reaction, which involves multiple immune cells and their secreting factors including interleukin-17 (IL-17), which is not only an important modulator of immune and hematopoietic responses but also affects bone metabolism. In the present study we aimed to determine whether IL-17 affects the regenerative potential of periodontal ligament mesenchymal stem cells (PDLSCs) by investigating its ability to modulate osteogenic differentiation of these cells in vitro along with associated signaling pathways. Our results revealed that IL-17 inhibited both the proliferation and migration of PDLSCs and decreased their osteogenic differentiation by activating ERK1,2 and JNK mitogen-activated protein kinases. Obtained data suggested that IL-17 might contribute to alveolar bone loss in PD.  相似文献   

7.
LPS potently induces dendritic cell maturation and the production of proinflammatory cytokines, such as IL-12, by activation of Toll-like receptor 4 (TLR4). Since IL-12 is important for the generation and maintenance of Th1 responses and may also inhibit Th2 cell generation from naive CD4 T cell precursors, it has been inferred that TLR4 signaling would have similar effects via the induction of IL-12 secretion. Surprisingly, we found that TLR4-defective mice subjected to sensitization and pulmonary challenge with a protein allergen had reductions in airway inflammation with eosinophils, allergen-specific IgE levels, and Th2 cytokine production, compared with wild-type mice. These reduced responses were attributable, at least in part, to decreased dendritic cell function: Dendritic cells from TLR4-defective mice expressed lower levels of CD86, a costimulatory molecule important for Th2 responses. They also induced less Th2 cytokine production by antigenically naive CD4 T cells in vitro and mediated diminished CD4 T cell Ag-specific pulmonary inflammation in vivo. These results indicate that TLR4 is required for optimal Th2 responses to Ags from nonpathogenic sources and suggest a role for TLR4 ligands, such as LPS derived from commensal bacteria or endogenously derived ligands, in maturation of the innate immune system before pathogen exposure.  相似文献   

8.
IL-4 and IL-13 play key roles in Th2 immunity and asthma pathogenesis. Although the function of these cytokines is partially linked through their shared use of IL-4Ralpha for signaling, the interplay between these cytokines in the development of memory Th2 responses is not well delineated. In this investigation, we show that both IL-4 and IL-13 influence the maturation of dendritic cells (DC) in the lung and their ability to regulate secretion of IFN-gamma and Th2 cytokines by memory CD4(+) T cells. Cocultures of wild-type T cells with pulmonary DC from allergic, cytokine-deficient mice demonstrated that IL-4 enhanced the capacity of DC to stimulate T cell secretion of Th2 cytokines, whereas IL-13 enhanced the capacity of DC to suppress T cell secretion of IFN-gamma. Because IL-4Ralpha is critical for IL-4 and IL-13 signaling, we also determined how variants of IL-4Ralpha influenced immune cell function. T cells derived from allergic mice expressing a high-affinity IL-4Ralpha variant produced higher levels of IL-5 and IL-13 compared with T cells derived from allergic mice expressing a low-affinity IL-4Ralpha variant. Although DC expressing different IL-4Ralpha variants did not differ in their capacity to influence Th2 cytokine production, they varied in their capacity to inhibit IFN-gamma production by T cells. Thus, IL-4 and IL-13 differentially regulate DC function and the way these cells regulate T cells. The affinity of IL-4Ralpha also appears to be a determinant in the balance between Th2 and IFN-gamma responses and thus the severity of allergic disease.  相似文献   

9.
The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.  相似文献   

10.
Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by microorganisms from the oral biofilm. Oral inoculation of mice with the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) induces marked alveolar bone loss and local production of inflammatory mediators, including Macrophage Migration Inhibitory Factor (MIF). The role of MIF for alveolar bone resorption during PD is not known. In the present study, experimental PD was induced in BALB/c wild-type mice (WT) and MIF knockout mice (MIF?/?) through oral inoculation of Aa. Despite enhanced number of bacteria, MIF?/? mice had reduced infiltration of TRAP-positive cells and reduced alveolar bone loss. This was associated with decreased neutrophil accumulation and increased levels of IL-10 in periodontal tissues. TNF-α production was similar in both groups. In vitro, LPS from Aa enhanced osteoclastic activity in a MIF-dependent manner. In conclusion, MIF has role in controlling bacterial growth in the context of PD but contributes more significantly to the progression of bone loss during PD by directly affecting differentiation and activity of osteoclasts.  相似文献   

11.
Toll-like receptors (TLRs) are pattern recognition receptors that play a critical role in innate immune diseases. TLR3, which is localized in the endosomal compartments of hematopoietic immune cells, is able to recognize double-stranded RNA (dsRNA) derived from viruses and bacteria and thereby induce innate immune responses. Inflammatory periodontal bone resorption is caused by bacterial infections, which initially is regulated by innate immunity; however, the roles of TLR3 signaling in bone resorption are still not known. We examined the roles of TLR3 signaling in bone resorption using poly(I:C), a synthetic dsRNA analog. In cocultures of mouse bone marrow cells and stromal osteoblasts, poly(I:C) clearly induced osteoclast differentiation. In osteoblasts, poly(I:C) increased PGE2 production and upregulated the mRNA expression of PGE2-related genes, Ptgs2 and Ptges, as well as that of a gene related to osteoclast differentiation, Tnfsf11. In addition, we found that indomethacin (a COX-2 inhibitor) or an antagonist of the PGE2 receptor EP4 attenuated the poly(I:C)-induced PGE2 production and subsequent Tnfsf11 expression. Poly(I:C) also prolonged the survival of the mature osteoclasts associated with the increased mRNA expression of osteoclast marker genes, Nfatc1 and Ctsk. In ex vivo organ cultures of periodontal alveolar bone, poly(I:C) induced bone-resorbing activity in a dose-dependent manner, which was attenuated by the simultaneous administration of either indomethacin or an EP4 antagonist. These data suggest that TLR3 signaling in osteoblasts controls PGE2 production and induces the subsequent differentiation and survival of mature osteoclasts. Endogenous TLR3 in stromal osteoblasts and osteoclasts synergistically induces inflammatory alveolar bone resorption in periodontitis.  相似文献   

12.
Molecular pathogenesis of Tannerella forsythia, a putative periodontal pathogen, has not yet been adequately elucidated due to limited information on its virulence factors. Here, identification of in vivo expressed antigens of T. forsythia is reported using in vivo-induced antigen technology (IVIAT). Among 13 000 recombinant clones screened, 16 positive clones were identified that reacted reproducibly with sera obtained from patients with periodontal disease. DNA sequences from 12 of these in vivo-induced genes were determined. IVIAT-identified protein antigens of T. forsythia include: BspA, a well-defined virulence factor of T. forsythia; enzymes involved in housekeeping functions (tRNA synthetases, glycine hydroxymethyltransferase, and glucoside glucohydrolase); enzymes implicated in tissue destruction (dipeptidyl peptidase IV); a DNA mismatch repair protein; and putative outer membrane proteins of unknown function. The in vivo gene expression of these IVIAT-identified antigens was confirmed by a quantitative real-time PCR analysis. This is, to the best of the authors' knowledge, the first report using IVIAT in T. forsythia. It is anticipated that detailed analysis of the in vivo-induced genes identified by IVIAT in this study will lead to a better understanding of the molecular mechanisms mediating periodontal infection by T. forsythia.  相似文献   

13.
Signaling through Toll-like receptors (TLR) activates dendritic cell (DC) maturation and IL-12 production, which directs the induction of Th1 cells. We found that the production of IL-10, in addition to inflammatory cytokines and chemokines, was significantly reduced in DCs from TLR4-defective C3H/HeJ mice in response to Bordetella pertussis. TLR4 was also required for B. pertussis LPS-induced maturation of DCs, but other B. pertussis components stimulated DC maturation independently of TLR4. The course of B. pertussis infection was more severe in C3H/HeJ than in C3H/HeN mice. Surprisingly, Ab- and Ag-specific IFN-gamma responses were enhanced at the peak of infection, whereas Ag-specific IL-10-producing T cells were significantly reduced in C3H/HeJ mice. This was associated with enhanced inflammatory cytokine production, cellular infiltration, and severe pathological changes in the lungs of TLR4-defective mice. Our findings suggest that TLR-4 signaling activates innate IL-10 production in response to B. pertussis, which both directly, and by promoting the induction of IL-10-secreting type 1 regulatory T cells, may inhibit Th1 responses and limit inflammatory pathology in the lungs during infection with B. pertussis.  相似文献   

14.
Toll-like receptor (TLR) 2 and TLR4 play a pivotal role in recognition of Candida albicans. We demonstrate that TLR2(-/-) mice are more resistant to disseminated Candida infection, and this is associated with increased chemotaxis and enhanced candidacidal capacity of TLR2(-/-) macrophages. Although production of the proinflammatory cytokines TNF, IL-1alpha, and IL-1beta is normal, IL-10 release is severely impaired in the TLR2(-/-) mice. This is accompanied by a 50% decrease in the CD4+CD25+ regulatory T (Treg) cell population in TLR2(-/-) mice. In vitro studies confirmed that enhanced survival of Treg cells was induced by TLR2 agonists. The deleterious role of Treg cells on the innate immune response during disseminated candidiasis was underscored by the improved resistance to this infection after depletion of Treg cells. In conclusion, C. albicans induces immunosuppression through TLR2-derived signals that mediate increased IL-10 production and survival of Treg cells. This represents a novel mechanism in the pathogenesis of fungal infections.  相似文献   

15.
16.
TLRs serve important immune and nonimmune functions in human intestinal epithelial cells (IECs). Proinflammatory Th1 cytokines have been shown to promote TLR expression and function in IECs, but the effect of key Th2 cytokines (IL-4, IL-5, IL-13) on TLR signaling in IECs has not been elucidated so far. We stimulated human model IECs with Th2 cytokines and examined TLR mRNA and protein expression by Northern blotting, RT-PCR, real-time RT-PCR, Western blotting, and flow cytometry. TLR function was determined by I-kappaBalpha phosphorylation assays, ELISA for IL-8 secretion after stimulation with TLR ligands and flow cytometry for LPS uptake. IL-4 and IL-13 significantly decreased TLR3 and TLR4 mRNA and protein expression including the requisite TLR4 coreceptor MD-2. TLR4/MD-2-mediated LPS uptake and TLR ligand-induced I-kappaBalpha phosphorylation and IL-8 secretion were significantly diminished in Th2 cytokine-primed IECs. The down-regulatory effect of Th2 cytokines on TLR expression and function in IECs also counteracted enhanced TLR signaling induced by stimulation with the hallmark Th1 cytokine IFN-gamma. In summary, Th2 cytokines appear to dampen TLR expression and function in resting and Th1 cytokine-primed human IECs. Diminished TLR function in IECs under the influence of Th2 cytokines may protect the host from excessive TLR signaling, but likely also impairs the host intestinal innate immune defense and increases IEC susceptibility to chronic inflammation in response to the intestinal microenvironment. Taken together, our data underscore the important role of Th2 cytokines in balancing TLR signaling in human IECs.  相似文献   

17.
Cutting edge: TLR2 directly triggers Th1 effector functions   总被引:2,自引:0,他引:2  
Toll-like receptors recognize pathogen-associated molecular patterns, activate innate immunity, and consequently modulate adaptive immunity in response to infections. TLRs are also expressed on T cells, and it has been shown that T cell activation is modulated by TLR ligands. However, the functions of TLRs on Th1 and Th2 effector cells and the molecular mechanisms underlying TLR-mediated activation are not fully understood. We analyzed TLR functions and downstream signaling events in both effector T cells. In mouse Th1 cells the stimulation by TLR2 but not by other TLRs directly induced IFN-gamma production, cell proliferation, and cell survival without TCR stimulation, and these effects were greatly enhanced by IL-2 or IL-12 through the enhanced activation of MAPKs. In contrast, no TLR affected the function of effector Th2 cells. These results identify TLR2 as a new specific activator of Th1 cell function and imply the involvement in Th1-mediated responses.  相似文献   

18.
Toll-like receptors (TLRs) play an important role in the induction of innate and adaptive immune response against influenza A virus (IAV) infection; however, the role of Toll-like receptor 7 (TLR7) during the innate immune response to IAV infection and the cell types affected by the absence of TLR7 are not clearly understood. In this study, we show that myeloid derived suppressor cells (MDSC) accumulate in the lungs of TLR7 deficient mice more so than in wild-type C57Bl/6 mice, and display increased cytokine expression. Furthermore, there is an increase in production of Th2 cytokines by TLR7(-/-) compared with wildtype CD4+ T-cells in vivo, leading to a Th2 polarized humoral response. Our findings indicate that TLR7 modulates the accumulation of MDSCs during an IAV infection in mice, and that lack of TLR7 signaling leads to a Th2-biased response.  相似文献   

19.
Experimental cutaneous leishmaniasis is a useful model in studying the mechanism regulating immune responses between T helper type 1 (Th1) and Th2. Mice susceptible to Leishmania major infection such as BALB/c (H-2(d)) are associated with the induction of the disease-promoting Th2 response, while the resistant mice such as DBA/2 (H-2(d)) develop the protective Th1 response. To understand the induction mechanism of Th1 and Th2 responses, it is necessary to establish an immunization scheme by which the induction of each Th response can be easily and experimentally controlled. Adjuvants are known to enhance the immune responses through the combined effect of several factors: prolonged release of antigen, migration of cells, mitogenic effect and so forth. When the genetically resistant DBA/2 mice were immunized twice with soluble leishmanial antigen (SLA), emulsified in incomplete Freund's adjuvant (IFA) before L. major inoculation, these mice mounted a Th2 cell response and suffered from progressive infection. While IL-4 and IL-13 were upregulated early after the infection in both healer and non-healer groups of mice, IL-5 and IL-10 were upregulated only in non-healer mice. From these results, IL-5 and IL-10 appear to have an important role, at least in the early phases of the infection, rather than IL-4 and IL-13 in establishing the disease-promoting Th2 response in leishmaniasis. Further, IL-9 was found to be expressed in both BALB/c and DBA/2 mice immunized with IFA/SLA. This cytokine may support the establishment of a Th2 response in these mice. Therefore it is suggested that Th2 cytokines play different roles between priming and maintaining the Th2 immune response after the infection.  相似文献   

20.

Introduction

Clinical studies suggest a direct influence of periodontal disease (PD) on serum inflammatory markers and disease assessment of patients with established rheumatoid arthritis (RA). However, the influence of PD on arthritis development remains unclear. This investigation was undertaken to determine the contribution of chronic PD to immune activation and development of joint inflammation using the collagen-induced arthritis (CIA) model.

Methods

DBA1/J mice orally infected with Porphyromonas gingivalis were administered with collagen II (CII) emulsified in complete Freund’s adjuvant (CFA) or incomplete Freund’s adjuvant (IFA) to induce arthritis. Arthritis development was assessed by visual scoring of paw swelling, caliper measurement of the paws, mRNA expression, paw micro-computed tomography (micro-CT) analysis, histology, and tartrate resistant acid phosphatase for osteoclast detection (TRAP)-positive immunohistochemistry. Serum and reactivated splenocytes were evaluated for cytokine expression.

Results

Mice induced for PD and/or arthritis developed periodontal disease, shown by decreased alveolar bone and alteration of mRNA expression in gingival tissues and submandibular lymph nodes compared to vehicle. P. gingivalis oral infection increased paw swelling and osteoclast numbers in mice immunized with CFA/CII. Arthritis incidence and severity were increased by P. gingivalis in mice that received IFA/CII immunizations. Increased synovitis, bone erosions, and osteoclast numbers in the paws were observed following IFA/CII immunizations in mice infected with P gingivalis. Furthermore, cytokine analysis showed a trend toward increased serum Th17/Th1 ratios when P. gingivalis infection was present in mice receiving either CFA/CII or IFA/CII immunizations. Significant cytokine increases induced by P. gingivalis oral infection were mostly associated to Th17-related cytokines of reactivated splenic cells, including IL-1β, IL-6, and IL-22 in the CFA/CII group and IL-1β, tumor necrosis factor-α, transforming growth factor-β, IL-6 and IL-23 in the IFA/CII group.

Conclusions

Chronic P. gingivalis oral infection prior to arthritis induction increases the immune system activation favoring Th17 cell responses, and ultimately accelerating arthritis development. These results suggest that chronic oral infection may influence RA development mainly through activation of Th17-related pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号