首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xie X  Wang QY  Xu HY  Qing M  Kramer L  Yuan Z  Shi PY 《Journal of virology》2011,85(21):11183-11195
We report a novel inhibitor that selectively suppresses dengue virus (DENV) by targeting viral NS4B protein. The inhibitor was identified by screening a 1.8-million-compound library using a luciferase replicon of DENV serotype 2 (DENV-2). The compound specifically inhibits all four serotypes of DENV (50% effective concentration [EC(50)], 1 to 4 μM; and 50% cytotoxic concentration [CC(50)], >40 μM), but it does not inhibit closely related flaviviruses (West Nile virus and yellow fever virus) or nonflaviviruses (Western equine encephalomyelitis virus, Chikungunya virus, and vesicular stomatitis virus). A mode-of-action study suggested that the compound inhibits viral RNA synthesis. Replicons resistant to the inhibitor were selected in cell culture. Sequencing of the resistant replicons revealed two mutations (P104L and A119T) in the viral NS4B protein. Genetic analysis, using DENV-2 replicon and recombinant viruses, demonstrated that each of the two NS4B mutations alone confers partial resistance and double mutations confer additive resistance to the inhibitor in mammalian cells. In addition, we found that a replication defect caused by a lethal NS4B mutation could be partially rescued through trans complementation. The ability to complement NS4B in trans affected drug sensitivity when a single cell was coinfected with drug-sensitive and drug-resistant viruses. Mechanistically, NS4B was previously shown to interact with the viral NS3 helicase domain; one of the two NS4B mutations recovered in our resistance analysis-P104L-abolished the NS3-NS4B interaction (I. Umareddy, A. Chao, A. Sampath, F. Gu, and S. G. Vasudevan, J. Gen. Virol. 87:2605-2614, 2006). Collectively, the results suggest that the identified inhibitor targets the DENV NS4B protein, leading to a defect in viral RNA synthesis.  相似文献   

2.
3.
The protective immunity conferred by a set of recombinant vaccinia viruses containing the entire coding sequence of dengue virus type 4 nonstructural glycoprotein NS1 plus various flanking sequences was evaluated by using a mouse encephalitis model. Mice immunized with recombinant vNS1-NS2a, which expresses authentic NS1, were solidly protected against intracerebral dengue virus challenge. However, mice immunized with recombinants vNS1-15%NS2a and vRSVG/NS1-15%NS2a, which express aberrant forms of NS1, were only partially protected (63 to 67% survival rate). Serologic analysis showed that mice immunized with vNS1-NS2a developed high titers of antibodies to NS1 as measured by radioimmunoprecipitation, enzyme-linked immunosorbent assay, and complement-mediated cytolytic assays. In addition, a pool of sera from these animals was protective in a passive transfer experiment. Lower titers of NS1-specific antibodies were detected in sera of animals immunized with vNS1-15%NS2a or vRSVG/NS1-15%NS2a by all three assays. These data support the view that protection against dengue virus infection in mice may be mediated at least in part by NS1-specific antibodies through a mechanism of complement-mediated lysis of infected cells. Additionally, immunization with two recombinant viruses expressing authentic NS1 of dengue virus type 2 conferred partial protection (30-50%) against dengue virus type 2 challenge.  相似文献   

4.
We have constructed a recombinant baculovirus containing a 4.0-kilobase dengue virus cDNA sequence that codes for the three virus structural proteins, capsid (C) protein, premembrane (PreM) protein, and envelope glycoprotein (E), and nonstructural proteins NS1 and NS2a. Infection of cultured Spodoptera frugiperda cells with this recombinant virus resulted in the production of E and NS1 proteins that were similar in size to the corresponding viral proteins expressed in dengue virus-infected simian cells. Other dengue virus-encoded proteins such as PreM and C were also synthesized. Rabbits immunized with the dengue virus protein products of the recombinant virus developed antibodies to PreM, E, and NS1, although the titers were low, especially to PreM and E. Nevertheless, the dengue virus antigens produced by the recombinant virus induced resistance in mice to fatal dengue encephalitis.  相似文献   

5.
We have tested the hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins by using an efficient in vitro expression system and monospecific antisera directed against the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed by using T7 RNA polymerase, and the RNA was translated in reticulocyte lysates. The resulting protein patterns indicated that proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain within NS3 to the first 184 amino acids but did not eliminate the possibility that sequences within NS2B were also required for proper cleavage. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.  相似文献   

6.
B Falgout  R H Miller    C J Lai 《Journal of virology》1993,67(4):2034-2042
Most proteolytic cleavages in the nonstructural protein (NS) region of the flavivirus polyprotein are effected by a virus-encoded protease composed of two viral proteins, NS2B and NS3. The N-terminal 180-amino-acid-region of NS3 includes sequences with homology to the active sites of serine proteases, and there is evidence that this portion of NS3 can mediate proteolytic cleavages. In contrast, nothing is known about required sequences in NS2B. We constructed a series of deletion mutations in the NS2B portion of plasmid pTM/NS2B-30% NS3, which expresses dengue virus type 4 (DEN4) cDNA encoding NS2B and the N-terminal 184 residues of NS3 from the T7 RNA polymerase promoter. Mutant or wild-type plasmids were transfected into cells that had been infected with a recombinant vaccinia virus expressing T7 RNA polymerase, and the protease activities of the expressed polyproteins were assayed by examining the extent of self-cleavage at the NS2B-NS3 junction. The results identify a 40-amino-acid segment of NS2B (DEN4 amino acids 1396 to 1435) essential for protease activity. A hydrophobicity profile of DEN4 NS2B predicts this segment constitutes a hydrophilic domain surrounded by hydrophobic regions. Hydrophobicity profiles of the NS2B proteins of other flaviviruses show similar patterns. Amino acid sequence alignment of this domain of DEN4 NS2B with comparable regions of other proteins of flaviviruses indicates significant sequence conservation, especially at the N-terminal end. These observations suggest that the central hydrophilic domain of NS2B of these other flaviviruses will also prove to be essential for protease activity.  相似文献   

7.
Kim M  Kim H  Cho SP  Min MK 《Journal of virology》2002,76(14):6944-6956
The hepatitis C virus (HCV)-encoded NS5B protein is an RNA-dependent RNA polymerase which plays a substantial role in viral replication. We expressed and purified the recombinant NS5B of an HCV genotype 3a from Esherichia coli, and we investigated its ability to bind to the viral RNA and its enzymatic activity. The results presented here demonstrate that NS5B interacts strongly with the coding region of positive-strand RNA, although not in a sequence-specific manner. It was also determined that more than two molecules of polymerase bound sequentially to this region with the direction 3' to 5'. Also, we attempted to determine the initiation site(s) of de novo synthesis by NS5B on X RNA, which contains the last 98 nucleotides of HCV positive-strand RNA. The initiation site(s) on X RNA was localized in the pyrimidine-rich region of stem I. However, when more than five of the nucleotides of stem I in X RNA were deleted from the 3' end, RNA synthesis initiated at another site of the specific ribonucleotide. Our study also showed that the efficiency of RNA synthesis, which was directed by X RNA, was maximized by the GC base pair at the penultimate position from the 3' end of the stem. These results will provide some clues to understanding the mechanism of HCV genomic RNA replication in terms of viral RNA-NS5B interaction and the initiation of de novo RNA synthesis.  相似文献   

8.
A transient protein expression system in COS-1 cells was used to study the role of hepatitis C virus (HCV)-encoded NS4A protein on HCV nonstructural polyprotein processing. By analyzing the protein expression and processing of a deletion mutant polypeptide, NS delta 4A, which encodes the entire putative HCV nonstructural polyprotein except the region encoding NS4A, the versatile functions of NS4A were revealed. Most of the NS3 processed from NS delta 4A was localized in the cytosol fraction and was degraded promptly. Coproduction of NS4A stabilizes NS3 and assists in its localization in the membrane. NS4A was found to be indispensable for cleavage at the 4B/5A site but not essential for cleavage at the 5A/5B site in NS delta 4A. The functioning of NS4A as a cofactor for cleavage at the 4B/5A site was also observed when 30 amino acids around this site was used as a substrate and a serine proteinase domain of 167 amino acids, from Gly-1049 to Ser-1215, was used as an enzyme protein, suggesting that possible domains for the interaction of NS4A were in those regions of the enzyme protein (NS3) and/or the substrate protein. Two proteins, p58 and p56, were produced from NS5A. For the production of p58, equal or excess molar amounts of NS4A relative to NS delta 4A were required. Deletion analysis of NS4A revealed a minimum functional domain of NS4A of 10 amino acids, from Gly-1678 to Ile-1687.  相似文献   

9.
The transmembrane NS4B protein of dengue virus (DENV) is a validated antiviral target that plays important roles in viral replication and invasion of innate immune response. The first 125 amino acids of DENV NS4B are sufficient for inhibition of alpha/beta interferon signaling. Resistance mutations to NS4B inhibitors are all mapped to the first 125 amino acids. In this study, we expressed and purified a protein representing the first 125 amino acids of NS4B (NS4B1–125). This recombinant NS4B1–125 protein was reconstituted into detergent micelles. Solution NMR spectroscopy demonstrated that there are five helices (α1 to α5) present in NS4B1–125. Dynamic studies, together with a paramagnetic relaxation enhancement experiment demonstrated that four helices, α2, α3, α4, and α5 are embedded in the detergent micelles. Comparison of wild type and V63I mutant (a mutation that confers resistance to NS4B inhibitor) NS4B1–125 proteins demonstrated that V63I mutation did not cause significant conformational changes, however, V63 may have a molecular interaction with residues in the α5 transmembrane domain under certain conditions. The structural and dynamic information obtained in study is helpful to understand the structure and function of NS4B.  相似文献   

10.
11.
The dengue viruses (DENVs) exist as numerous genetic strains that are grouped into four antigenically distinct serotypes. DENV strains from each serotype can cause severe disease and threaten public health in tropical and subtropical regions worldwide. No licensed antiviral agent to treat DENV infections is currently available, and there is an acute need for the development of novel therapeutics. We found that a synthetic small interfering RNA (siRNA) (DC-3) targeting the highly conserved 5' cyclization sequence (5'CS) region of the DENV genome reduced, by more than 100-fold, the titers of representative strains from each DENV serotype in vitro. To determine if DC-3 siRNA could inhibit DENV in vivo, an "in vivo-ready" version of DC-3 was synthesized and tested against DENV-2 by using a mouse model of antibody-dependent enhancement of infection (ADE)-induced disease. Compared with the rapid weight loss and 5-day average survival time of the control groups, mice receiving the DC-3 siRNA had an average survival time of 15 days and showed little weight loss for approximately 12 days. DC-3-treated mice also contained significantly less virus than control groups in several tissues at various time points postinfection. These results suggest that exogenously introduced siRNA combined with the endogenous RNA interference processing machinery has the capacity to prevent severe dengue disease. Overall, the data indicate that DC-3 siRNA represents a useful research reagent and has potential as a novel approach to therapeutic intervention against the genetically diverse dengue viruses.  相似文献   

12.
Dengue virus (DENV) non-structural (NS) 4A is a membrane protein essential for viral replication. The N-terminal region of NS4A contains several helices interacting with the cell membrane and the C-terminal region consists of three potential transmembrane regions. The secondary structure of the intact NS4A is not known as the previous structural studies were carried out on its fragments. In this study, we purified the full-length NS4A of DENV serotype 4 into dodecylphosphocholine (DPC) micelles. Solution NMR studies reveal that NS4A contains six helices in DPC micelles. The N-terminal three helices are amphipathic and interact with the membrane. The C-terminal three helices are embedded in micelles. Our results suggest that NS4A contains three transmembrane helices. Our studies provide for the first time structural information of the intact NS4A of DENV and will be useful for further understanding its role in viral replication.  相似文献   

13.
14.
During infection of both vertebrate and invertebrate cell lines, the alphanodavirus Nodamura virus (NoV) expresses two nonstructural proteins of different lengths from the B2 open reading frame. The functions of these proteins have yet to be determined, but B2 of the related Flock House virus suppresses RNA interference both in Drosophila cells and in transgenic plants. To examine whether the NoV B2 proteins had similar functions, we compared the replication of wild-type NoV RNA with that of mutants unable to make the B2 proteins. We observed a defect in the accumulation of mutant viral RNA that varied in extent from negligible in some cell lines (e.g., baby hamster kidney cells) to severe in others (e.g., human HeLa and Drosophila DL-1 cells). These results are consistent with the notion that the NoV B2 proteins act to circumvent an innate antiviral response such as RNA interference that differs in efficacy among different host cells.  相似文献   

15.
Qu L  McMullan LK  Rice CM 《Journal of virology》2001,75(22):10651-10662
Isolates of bovine viral diarrhea virus (BVDV), the prototype pestivirus, are divided into cytopathic (cp) and noncytopathic (ncp) biotypes according to their effect on cultured cells. The cp viruses also differ from ncp viruses by the production of viral nonstructural protein NS3. However, the mechanism by which cp viruses induce cytopathic effect in cell culture remains unknown. Here we used a genetic approach to isolate ncp variants that arose from a cp virus at low frequency. A bicistronic BVDV (cp strain NADL) was created that expressed puromycin acetyltransferase as a dominant selectable marker. This bicistronic virus exhibited slightly slower growth kinetics and smaller plaques than NADL but remained cp. A number of independent ncp variants were isolated by puromycin selection. Remarkably, these ncp variants produced NS3 and viral RNA at levels comparable to those of the cp parent. Sequence analyses uncovered no change in NS3, but for all ncp variants a Y2441C substitution at residue 15 of NS4B was found. Introduction of the Y2441C substitution into the NADL or bicistronic cp viruses reconstituted the ncp phenotype. Y2441 is highly conserved among pestiviruses and is located in a region of NS4B predicted to be on the cytosolic side of the endoplasmic reticulum membrane. Other engineered substitutions for Y2441 also affected viral cytopathogenicity and viability, with Y2441V being cp, Y2441A being ncp, and Y2441D rendering the virus unable to replicate. The ncp substitutions for Y2441 resulted in slightly increased levels of NS2-3 relative to NS3. We also showed that NS3, NS4B, and NS5A could be chemically cross-linked in NADL-infected cells, indicating that they are associated as components of a multiprotein complex. Although the mechanism remains to be elucidated, these results demonstrate that mutations in NS4B can attenuate BVDV cytopathogenicity despite NS3 production.  相似文献   

16.
The single amino acid change Gly172 to Ser in the phosphoprotein (P) of respiratory syncytial virus (RSV) has previously been shown to be responsible for the thermosensitivity and protein-negative phenotype of tsN19, a mutant of the B subgroup RSN-2 strain. This single change was inserted into the P gene of the A subgroup virus RSS-2, and the resulting phenotype was observed in a plasmid-driven reconstituted RSV RNA polymerase system. Expression from a genome analogue containing two reporter genes was thermosensitive when directed by plasmids containing the N, L, M2, and mutant P genes cloned under the control of T7 promoters. Analysis of RNA synthesis showed that mutant P protein was unable to produce genome, antigenome, or mRNA at the restrictive temperature. At a semipermissive temperature, genome, antigenome, and mRNA synthesis were all reduced, 6- to 30-fold, relative to synthesis directed by a wild-type P plasmid. Binding of the mutant P protein to N protein in the absence of other viral proteins was unaffected by temperature, indicating that the lesion did not produce a large enough structural change to disrupt this binding. These data suggest that the plasmid rescue system is suitable for investigation of the role of thermosensitive mutations in RSV polymerase components in RNA synthesis.  相似文献   

17.
The flavivirus nonstructural protein NS1 is expressed as three discrete species in infected mammalian cells: an intracellular, membrane-associated form essential for viral replication, a cell surface-associated form that may be involved in signal transduction, and a secreted form (sNS1), the biological properties of which remain elusive. To determine the distribution of the dengue virus (DEN) sNS1 protein in vivo, we have analyzed by immunohistological means the tissue tropism of purified DEN sNS1 injected intravenously into adult mice. The sNS1 protein was found predominantly associated with the liver, where hepatocytes appeared to represent a major target cell. We further showed that sNS1 could be efficiently endocytosed by human Huh7 and HepG2 hepatocytes in vitro. After its internalization, the protein was detected intracellularly for at least 48 h without being substantially degraded. Colocalization studies of sNS1 with markers of the endolysosomal compartments revealed that the protein was specifically targeted to lysobisphosphatidic acid-rich structures reminiscent of late endosomes, as confirmed by electron microscopy. Intracellular accumulation of sNS1 in Huh7 cells enhanced the fluid phase uptake of rhodamine-labeled dextran. Furthermore, preincubation of Huh7 cells with sNS1 increased dengue virus production after infection with the homologous strain of DEN-1 virus. Our results demonstrate that the accumulation of DEN sNS1 in the late endosomal compartment of hepatocytes potentializes subsequent dengue virus infection in vitro, raising the possibility that sNS1 may contribute to viral propagation in vivo.  相似文献   

18.
Dengue virus nonstructural protein 5 (NS5) is a large multifunctional protein with a central role in viral replication. We previously identified two nuclear localization sequences (NLSs) within the central region of dengue virus type-2 (DENV-2) NS5 ('aNLS' and 'bNLS') that are recognized by the importin alpha/beta and importin beta1 nuclear transporters, respectively. Here, we demonstrate the importance of the kinetics of NS5 nuclear localization to virus production for the first time and show that the aNLS is responsible. Site-specific mutations in the bipartite-type aNLS or bNLS region were introduced into a reporter plasmid encoding green fluorescent protein fused to the N-terminus of DENV-2 NS5, as well as into DENV-2 genomic length complementary DNA. Mutation of basic residues in the highly conserved region of the bNLS did not affect nuclear import of NS5. In contrast, mutations in either basic cluster of the aNLS decreased NS5 nuclear accumulation and reduced virus production, with the greatest reduction observed for mutation of the second cluster (K(387)K(388)K(389)); mutagenesis of both clusters abolished NS5 nuclear import and DENV-2 virus production completely. The latter appeared to relate to the impaired ability of virus lacking nuclear-localizing NS5, as compared with wild-type virus expressing nuclear-localizing NS5, to reduce interleukin-8 production as part of the antiviral response. The results overall indicate that NS5 nuclear localization through the aNLS is integral to viral infection, with significant implications for other flaviviruses of medical importance, such as yellow fever and West Nile viruses.  相似文献   

19.
A Cahour  B Falgout    C J Lai 《Journal of virology》1992,66(3):1535-1542
The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号