首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dendritic cells recognize pathogens through pattern recognition receptors such as Toll-like receptors and phagocytose and digest them by phagocytic receptors for antigen presentation. This study was designed to clarify the cross-talk between recognition and phagocytosis of microbes in dendritic cells. The murine dendritic cell line XS106 cells were stimulated with the murine C-type lectin SIGNR1 ligand lipoarabinomannan and the Toll-like receptor 2 ligand FSL-1. The co-stimulation significantly suppressed FSL-1-mediated activation of NF-κB as well as production of TNF-α, IL-6 and IL-12p40 in a dose-dependent manner. The suppression was significantly but not completely recovered by knock-down of SIGNR1. SIGNR1 was associated with Toll-like receptor 2 in XS106 cells. The co-stimulation upregulated the expression of suppressor of cytokine signalling-1 in XS106 cells, the knock-down of which almost completely recovered the suppression of the FSL-1-mediated cytokine production by lipoarabinomannan. In addition, it was found that the MyD88-adaptor-like protein in XS106 cells was degraded by co-stimulation with FSL-1 and lipoarabinomannan in the absence, but not the presence, of the proteasome inhibitor MG132 and the degradation was inhibited by knock-down of suppressor of cytokine signalling-1. This study suggests that Toll-like receptor 2-mediated signalling is negatively regulated by SIGNR1-mediated signalling in dendritic cells, possibly through suppressor of cytokine signalling-1-mediated degradation of the MyD88-adaptor-like protein.  相似文献   

2.
Orientia tsutsugamushi is an obligately intracellular bacterium and the etiological agent of scrub typhus. The lung is a major target organ of infection, displaying type 1-skewed proinflammatory responses. Lung injury and acute respiratory distress syndrome are common complications of severe scrub typhus; yet, their underlying mechanisms remain unclear. In this study, we investigated whether the C-type lectin receptor (CLR) Mincle contributes to immune recognition and dysregulation. Following lethal infection in mice, we performed pulmonary differential expression analysis with NanoString. Of 671 genes examined, we found 312 significantly expressed genes at the terminal phase of disease. Mincle (Clec4e) was among the top 5 greatest up-regulated genes, accompanied with its signaling partners, type 1-skewing chemokines (Cxcr3, Ccr5, and their ligands), as well as Il27. To validate the role of Mincle in scrub typhus, we exposed murine bone marrow-derived macrophages (MΦ) to live or inactivated O. tsutsugamushi and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that while heat-killed bacteria stimulated transitory Mincle expression, live bacteria generated a robust response in MΦ, which was validated by indirect immunofluorescence and western blot. Notably, infection had limited impact on other tested CLRs or TLRs. Sustained proinflammatory gene expression in MΦ (Cxcl9, Ccl2, Ccl5, Nos2, Il27) was induced by live, but not inactivated, bacteria; infected Mincle-/- MΦ significantly reduced proinflammatory responses compared with WT cells. Together, this study provides the first evidence for a selective expression of Mincle in sensing O. tsutsugamushi and suggests a potential role of Mincle- and IL-27-related pathways in host responses to severe infection. Additionally, it provides novel insight into innate immune recognition of this poorly studied bacterium.  相似文献   

3.
Defects in IL-12 production or IL-12 responsiveness result in a vulnerability to infection with non-viral intracellular organisms, but the immunological mechanisms responsible for this susceptibility remain poorly understood. We present an immunological analysis of a patient with disseminated Salmonella enteritidis and a homozygous splice acceptor mutation in the IL-12Rbeta1-chain gene. This mutation resulted in the absence of IL-12Rbeta1 protein on PBMC and an inability of T cells to specifically bind IL-12 or produce IFN-gamma in response to either IL-12 or IL-23. The accumulation of memory (CD45R0(high)) CD4 T cells that were CCR7(high) (putative central memory cells) was normal or increased for age. Central memory CD4 T cells of the patient and age-matched controls were similar in having a low to undetectable capacity to produce IFN-gamma after polyclonal stimulation. In contrast, the patient had a substantial decrease in the number of CCR7(neg/dull) CD45R0(high) memory CD4 T cells (putative effector memory cells), and these differed from control cells in having a minimal ability to produce IFN-gamma after polyclonal stimulation. Importantly, tetanus toxoid-specific IFN-gamma production by PBMC from the patient was also significantly reduced compared with that in age-matched controls, indicating that signaling via the IL-12Rbeta1-chain is generally necessary for the in vivo accumulation of human memory CD4 T cells with Th1 function. These results are also consistent with a model in which the IL-12Rbeta1 subunit is necessary for the conversion of central memory CD4 T cells into effector memory cells.  相似文献   

4.
Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARδ expression in vivo, and transgenic mice overexpressing muscle-specific PPARδ are reportedly protected from diet-induced obesity. We thus hypothesized that obesity observed in ovariectomized mice, a model of menopause, may result in part from abrogated expression of muscle PPARδ and/or downstream mediators such as FoxO1. To test this hypothesis, we ovariectomized (OVX) or sham-ovariectomized (SHM) 10-week old female C57Bl/6J mice, and subsequently harvested quadriceps muscles 12 weeks later for gene expression studies. Compared to SHM, muscle from OVX mice displayed significantly decreased expression of PPARδ (3.4-fold), FoxO1 (4.5-fold), PDK-4 (2.3-fold), and UCP-2 (1.8-fold). Consistent with studies indicating PPARδ and FoxO1 regulate muscle fiber type, we observed dramatic OVX-specific decreases in slow isoforms of the contractile proteins myosin light chain (11.1-fold) and troponin C (11.8-fold). In addition, muscles from OVX mice expressed 57% less myogenin (drives type I fiber formation), 2-fold more MyoD (drives type II fiber formation), and 1.6-fold less musclin (produced exclusively by type II fibers) than SHM, collectively suggesting a shift towards less type I oxidative fibers. Finally, and consistent with changes in PPARδ and FoxO1 activity, we observed decreased expression of atrogin-1 (2.3-fold) and MuRF-1 (1.9-fold) in OVX mice. In conclusion, muscles from ovariectomized mice display decreased PPARδ and FoxO1 expression, abrogated expression of downstream targets involved in lipid and protein metabolism, and gene expression profiles indicating less type I oxidative fibers.  相似文献   

5.
The scavenger receptor C-type lectin (SRCL) is an endothelial receptor that is similar in organization to type A scavenger receptors for modified low density lipoproteins but contains a C-type carbohydrate-recognition domain (CRD). Fragments of the receptor consisting of the entire extracellular domain and the CRD have been expressed and characterized. The extracellular domain is a trimer held together by collagen-like and coiled-coil domains adjacent to the CRD. The amino acid sequence of the CRD is very similar to the CRD of the asialoglycoprotein receptor and other galactose-specific receptors, but SRCL binds selectively to asialo-orosomucoid rather than generally to asialoglycoproteins. Screening of a glycan array and further quantitative binding studies indicate that this selectivity results from high affinity binding to glycans bearing the Lewis(x) trisaccharide. Thus, SRCL shares with the dendritic cell receptor DC-SIGN the ability to bind the Lewis(x) epitope. However, it does so in a fundamentally different way, making a primary binding interaction with the galactose moiety of the glycan rather than the fucose residue. SRCL shares with the asialoglycoprotein receptor the ability to mediate endocytosis and degradation of glycoprotein ligands. These studies suggest that SRCL might be involved in selective clearance of specific desialylated glycoproteins from circulation and/or interaction of cells bearing Lewis(x)-type structures with the vascular endothelium.  相似文献   

6.
An increasing number of bacterial pathogens produce an array of glycoproteins of unknown function. Here we report that Campylobacter jejuni proteins that are modified by the N -linked glycosylation machinery encoded by the pgl locus bind the human Macrophage Galactose-type lectin (MGL). MGL receptor binding was abrogated by EDTA and N -acetylgalactosamine (GalNAc) and was successfully transferred to Escherichia coli by introducing the C. jejuni pgl locus together with a glycan acceptor protein. In addition to glycoproteins, C. jejuni lipooligosaccharide with a terminal GalNAc residue was recognized by MGL. Recombinant E. coli expressing the C. jejuni pgl locus in the absence of a suitable glycan acceptor protein produced altered lipopolysaccharide glycoforms that gained MGL reactivity. Infection assays demonstrated high levels of GalNAc-dependent interaction of the recombinant E. coli with MGL-transfected mammalian cells. In addition, interleukin-6 production by human dendritic cells was enhanced by C. jejuni lacking N -linked glycans compared with wild-type bacteria. Collectively, our results provide evidence that both N -linked glycoproteins and distinct lipooligosaccharide glycoforms of C. jejuni are ligands for the human C-type lectin MGL and that the C. jejuni N -glycosylation machinery can be exploited to target recombinant bacteria to MGL-expressing eukaryotic cells.  相似文献   

7.
Endo180/urokinase plasminogen activator receptor-associated protein together with the mannose receptor, the phospholipase A(2) receptor, and DEC-205/MR6-gp200 comprise the four members of the mannose receptor family. These receptors have a unique structural composition due to the presence of multiple C-type lectin-like domains within a single polypeptide backbone. In addition, they are all constitutively internalized from the plasma membrane via clathrin-mediated endocytosis and recycled back to the cell surface. Endo180 is a multifunctional receptor displaying Ca(2+)-dependent lectin activity, collagen binding, and association with the urokinase plasminogen activator receptor, and it has a proposed role in extracellular matrix degradation and remodeling. Within their short cytoplasmic domains, all four receptors contain both a conserved tyrosine-based and dihydrophobic-based putative endocytosis motif. Unexpectedly, Endo180 was found to be distinct within the family in that the tyrosine-based motif is not required for efficient delivery to and recycling from early endosomes. By contrast, receptor internalization is completely dependent on the dihydrophobic motif and modulated by a conserved upstream acidic residue. Furthermore, unlike the mannose receptor, Endo180 does not function as a phagocytic receptor in vitro. These findings demonstrate that despite an overall structural similarity, members of this receptor family employ distinct trafficking mechanisms that may reflect important differences in their physiological functions.  相似文献   

8.
The cDNA clone encoding a mouse scavenger receptor with C-type lectin (SRCL), a novel member of the scavenger receptor family, has been isolated from a mouse embryonic cDNA library. The predicted cDNA sequence contains a 2226 bp open reading frame encoding a coiled-coil, collagen-like, C-type lectin/carbohydrate recognition domain with an overall sequence identity of 92% to human SRCL. In contrast to human, mouse SRCL mRNA was expressed ubiquitously in various adult tissues including the liver and spleen, in which human SRCL mRNA was under detection limits. Mouse SRCL mRNA was expressed in the macrophage cell line J774A.1 cells at a high level and in the embryo as early as E9.  相似文献   

9.
The aggregating proteoglycans (aggrecan, versican, neurocan, and brevican) are important components of many extracellular matrices. Their N-terminal globular domain binds to hyaluronan, but the function of their C-terminal region containing a C-type lectin domain is less clear. We now report that a 90-kDa protein copurifies with recombinant lectin domains from aggrecan and versican, but not from the brain-specific neurocan and brevican. Amino acid sequencing of tryptic peptides from this protein identified it as fibulin-1. This extracellular matrix glycoprotein is strongly expressed in tissues where versican is expressed (blood vessels, skin, and developing heart), and also expressed in developing cartilage and bone. It is thus likely to interact with these proteoglycans in vivo. Surface plasmon resonance measurements confirmed that aggrecan and versican lectin domains bind fibulin-1, whereas brevican and neurocan do not. As expected for a C-type lectin, the interactions with fibulin-1 are Ca2+-dependent, with KD values in the low nanomolar range. Using various deletion mutants, the binding site for aggrecan and versican lectin domains was mapped to the epidermal growth factor-like repeats in domain II of fibulin-1. No difference in affinity was found for deglycosylated fibulin-1, indicating that the proteoglycan C-type lectin domains bind to the protein part of fibulin-1.  相似文献   

10.
We report the cloning of four distinct cDNAs and a genomic sequence encoding a multimeric serum lectin found in the blood of Atlantic salmon (Salmo salar). The sequence variation among the cDNAs as well as genomic Southern blotting analysis revealed a multi-gene family. Expression of the salmon serum lectin (SSL) was specific to kidney, as demonstrated by RT-PCR. Analysis of the 173-amino acid sequence of SSL confirmed that it is a member of the C-type lectin superfamily. Sequence alignments and intron/exon structure of the SSL gene showed it to belong to the type VII C-type lectins, which normally bind to galactose or other ligands, whereas the SSL protein sequence contains the EPN motif of mannose-binding C-type lectins, that bind mannose or related carbohydrates.  相似文献   

11.
We report the cloning of four distinct cDNAs and a genomic sequence encoding a multimeric serum lectin found in the blood of Atlantic salmon (Salmo salar). The sequence variation among the cDNAs as well as genomic Southern blotting analysis revealed a multi-gene family. Expression of the salmon serum lectin (SSL) was specific to kidney, as demonstrated by RT-PCR. Analysis of the 173-amino acid sequence of SSL confirmed that it is a member of the C-type lectin superfamily. Sequence alignments and intron/exon structure of the SSL gene showed it to belong to the type VII C-type lectins, which normally bind to galactose or other ligands, whereas the SSL protein sequence contains the EPN motif of mannose-binding C-type lectins, that bind mannose or related carbohydrates.  相似文献   

12.
Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
In this study, we analyzed the effect of endothelin-1 (ET-1) on expression of the lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 LOX-1 and on oxLDL uptake in primary cultures of human umbilical vein endothelial cells (HUVEC). LOX-1 mRNA was quantified by standard-calibrated competitive RT-PCR, LOX-1 protein expression by Western analysis and endothelial oxLDL uptake using DiI-labeled oxLDL. ET-1 induces LOX-1 mRNA expression, reaching its maximum after 1 h (160 +/- 14% of control, 100 nM ET-1, P < 0.05). This increased ET-1-mediated LOX-1 mRNA expression could be inhibited by endothelin receptor B antagonist BQ-788. In addition, ET-1 stimulates LOX-1 protein expression and oxLDL uptake in HUVEC. The augmented oxLDL uptake by ET-1 is mediated by endothelin receptor B, but not by protein kinases. These data support a new pathophysiological mechanism how locally and systemically increased ET-1 levels could promote LOX-1-mediated oxLDL uptake in human endothelial cells and the development and progression of endothelial dysfunction and atherosclerosis.  相似文献   

14.
Galactosyl receptor, a cell surface Ca2+-dependent lectin with binding affinity for galactose, was evaluated by immunoblotting, immunoprecipitation, Northern blotting, and immunocytochemistry in human liver, testis, and sperm. Polyclonal antisera raised against the minor asialoglycoprotein receptor variant of rat hepatocytes (designated rat hepatic lectin-2/3, RHL-2/3), and its human liver-equivalent (designated H2), recognize native galactosyl receptor in the testis and sperm in immunoblotting, immunoprecipitation, and immunocytochemical experiments. An equivalent to the major hepatocyte asialoglycoprotein receptor variant (rat RHL-1 and human H1) was not detected. Human testis and sperm galactosyl receptor was resolved, after immunoprecipitation and immunoblotting, as a single protein component of molecular mass 50 kD. The single protein component in human testis and sperm contrasted with the doublet nature of rat testis and sperm galactosyl receptor, consisting of two components of molecular masses of 54 and 49 kD. Northern blotting experiments using radiolabeled H1 and H2 cDNA probes confirmed the presence of H2 mRNA and the lack of H1 mRNA in the human testis. Immunocytochemical studies detected specific antigenic sites on the entire surfaces of spermatogenic cells. However, immunoreactivity in epididymal and ejaculated sperm was confined to head surfaces overlying the acrosome. Results from these studies, and from previous studies in the rat, suggest that the testis/sperm galactosyl receptor is a C-type Ca2+-dependent lectin with possible roles in cell-cell interaction during spermatogenesis and sperm-zona pellucida binding at fertilization. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Wounds heal through a highly regulated, self-limited inflammatory response, however, precise inflammatory mediators have not been fully delineated. In this study, we report that in a mouse model of excisional skin wound healing the chemokine CX3CL1 and its receptor CX3CR1 were both highly induced at wound sites; CX3CL1 colocalized with macrophages and endothelial cells, whereas CX3CR1 colocalized mainly with macrophages and fibroblasts. Loss of CX3CR1 function delayed wound closure in both CX3CR1 knockout (KO) mice and in wild-type mice infused with anti-CX3CR1-neutralizing Ab. Conversely, transfer of bone marrow from donor wild-type mice, but not from donor CX3CR1 KO mice, restored wound healing to normal in CX3CR1 KO-recipient mice. Direct effects of CX3CR1 disruption at the wound site included marked reduction of macrophages and macrophage products, such as TGF-beta1 and vascular endothelial growth factor. Consistent with this, we observed reduced alpha-smooth muscle actin (a marker for myofibroblasts) and collagen deposition in skin from wounded CX3CR1 KO mice, as well as reduced neovascularization. Together, the data support a molecular model of skin wound repair in which CX3CR1 mediates direct recruitment of bone marrow-derived monocytes/macrophages which release profibrotic and angiogenic mediators.  相似文献   

16.
17.
18.
19.
Dendritic cells (DCs) are APCs that play an essential role by bridging innate and adaptive immunity. DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is one of the major C-type lectins expressed on DCs and exhibits high affinity for nonsialylated Lewis (Le) glycans. Recently, we reported the characterization of oligosaccharide ligands expressed on SW1116, a typical human colorectal carcinoma recognized by mannan-binding protein, which is a serum C-type lectin and has similar carbohydrate-recognition specificities as DC-SIGN. These tumor-specific oligosaccharide ligands were shown to comprise clusters of tandem repeats of Lea/Leb epitopes. In this study, we show that DC-SIGN is involved in the interaction of DCs with SW1116 cells through the recognition of aberrantly glycosylated forms of Lea/Leb glycans on carcinoembryonic Ag (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1). DC-SIGN ligands containing Lea/Leb glycans are also highly expressed on primary cancer colon epithelia but not on normal colon epithelia, and DC-SIGN is suggested to be involved in the association between DCs and colorectal cancer cells in situ by DC-SIGN recognizing these cancer-related Le glycan ligands. Furthermore, when monocyte-derived DCs (MoDCs) were cocultured with SW1116 cells, LPS-induced immunosuppressive cytokines such as IL-6 and IL-10 were increased. The effects were significantly suppressed by blocking Abs against DC-SIGN. Strikingly, LPS-induced MoDC maturation was inhibited by supernatants of cocultures with SW1116 cells. Our findings imply that colorectal carcinomas affecting DC function and differentiation through interactions between DC-SIGN and colorectal tumor-associated Le glycans may induce generalized failure of a host to mount an effective antitumor response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号