首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
干细胞发育中存在对称/不对称两种方式的交替分裂,精确调控维持正常发育。相关调控因素有外源性机制和内源性机制,发现于基本模式生物果蝇,主要包括干细胞周围微环境、细胞极性、纺锤体轴向和命运决定子不对称分布。调控机制的失常将导致干细胞分裂模式紊乱,可能造成肿瘤发生。简要综述了相关研究进展。  相似文献   

2.
多细胞生物的发育是从一个受精卵分化成多种类型细胞的过程。细胞多样性形成的基础是不等分裂,不等分裂是干细胞自我更新和自我维持的关键。干细胞不等分裂有细胞内和细胞外两种调节机制。果蝇神经干细胞增殖和分化、植物胚胎发育、表皮气孔形成及根内皮层的分化,是研究不等细胞分裂调节机制最多的发育背景。本综述介绍了果蝇神经干细胞和植物胚胎发育早期、表皮气孔发生及根皮层内皮层中细胞不等分裂内在调节机制的研究进展。  相似文献   

3.
果蝇肠道干细胞研究进展   总被引:1,自引:0,他引:1  
唐旭东  薛建  毛飞 《昆虫知识》2010,47(3):435-438
对果蝇Drosophila melanogaster Meigen肠道干细胞的研究现已触及生物学的很多方面,目前对这类细胞的研究主要集中于干细胞的小生境、信号路径的调控和细胞的分化,本文阐述了果蝇肠道干细胞研究方面的最新进展。果蝇肠道干细胞和脊椎动物肠道干细胞有诸多类似之处,所以弄清果蝇肠道干细胞的机理,可以为复杂的脊椎动物肠道干细胞研究提供了一定的理论基础。  相似文献   

4.
正在神经系统发育过程中,神经干细胞由对称性分裂到非对称性分裂,会转换到不依赖营养条件的糖酵解代谢。对于神经干细胞饥饿抵抗和缺氧耐受的机制尚未完全清楚。2011年,Cheng和Bailey等人在果蝇大脑中揭示了部分饥饿抵抗的机制。在缺氧干细胞中,可发现大量的缺氧诱导因子(HIF)和活性氧(ROS),这两者使得干细胞能量代谢转变为糖酵解为主,产生大  相似文献   

5.
Xie XY  Pei XT 《生理科学进展》2003,34(2):139-141
Piwi是果蝇卵巢中发现的一个对干细胞的分裂有调控作用的基因。Piwi家族蛋白的表达在各种生物中具有广泛的保守性,而且大多参与干细胞自我更新的调控。在果蝇卵巢中,Piwi对生殖干细胞的调控方式包括外源调控和内源调控两种,而高等动物中的同源物Hiwi只以自调控的方式控制干细胞的分裂和分化。Piwi家族蛋白含有保守结构域Piwi box和PAZ。在果蝇中Yb是Piwi信号途径的上游。  相似文献   

6.
胡永红 《昆虫知识》2006,43(6):889-889
脊椎动物和无脊椎动物消化系统在其发育、细胞组成和遗传控制方面有很大的相似性。果蝇中肠很典型,肠壁囊泡组成单层肠上皮的大部分,但与消化道的内分泌细胞散布分布。人类和老鼠的肠细胞由干细胞不断地补充,如果误调节会导致一些消化疾病和癌症。相反,蝇类肠道内没有发现干细胞,而果蝇肠道细胞被认为相对稳定。Ohlstein和Spradling运用系统标记法发现,果蝇成虫中肠后部细胞由特异的肠内干细胞(ISCs)不断地补充。同样在脊椎动物中,ISCs是多能性的,而且Notch信号途径是必需的,它可以产生内分泌细胞的恰当部分。Notch信号对于ISC子细胞分化是必需的,  相似文献   

7.
为了从果蝇肠道内分离乳酸乳球菌,并研究它对宿主发育历期的影响,用MRS培养基从果蝇肠道内分离细菌,并经16S rRNA基因序列比对确定菌种;随后,检测果蝇的发育历期和生长速率。其中,免疫荧光染色和实时定量PCR分别用于检测肠道细胞增殖和促胸腺激素与胰岛素通路的激活;葡萄糖氧化酶法用于检测葡萄糖浓度。结果显示,从果蝇体内分离到一株乳酸乳球菌,该菌可以在果蝇肠道内有效定植,并通过生长速率促进果蝇的发育历期。在细胞水平上,乳酸乳球菌相关果蝇肠道内有丝分裂细胞约是无菌果蝇的6倍。在分子水平上,乳酸乳球菌激活荷尔蒙和胰岛素信号以刺激机体全身性增长。综上所述,乳酸乳球菌是果蝇的共生菌,可以通过荷尔蒙和胰岛素信号刺激果蝇的生长和发育。  相似文献   

8.
唐润东  毛菲菲 《昆虫学报》2016,59(2):148-155
【目的】研究市场上常见的几种儿童、青少年较为喜爱的小食品的主要营养成分,及其对黑腹果蝇Drosophila melanogaster的体重、发育等的影响,进而探讨膳食中营养均衡的重要性。【方法】采用双缩脲法、苏丹Ⅲ染色法及碘酒染色法分别对食物中的蛋白质、脂肪及淀粉含量进行测定。分别用基础培养基或实验用食品配制的培养基培养黑腹果蝇,待果蝇卵孵化后,取一定数量果蝇个体进行称重,并对果蝇中肠进行解剖和免疫荧光染色,观察果蝇肠道发育情况。【结果】基础食物(培养基)中的蛋白质、脂肪及淀粉含量配比较为均衡,而实验用零食有些脂肪含量较高,有些蛋白质含量较高,有些淀粉含量较高,配比严重失衡。淀粉及脂肪含量均较高的食物能引起果蝇体重超重;同时果蝇肠道细胞Arm/Pros的染色显著增加,显示肠道干细胞数目显著增加,另外果蝇肠壁明显加厚;而食物中淀粉或蛋白质严重缺失的食物则引起果蝇发育障碍。其中,在高碳水化合物但几乎没有蛋白质存在的食物中,果蝇干细胞数目同样增加很多,肠壁加厚,但其体重显著降低,同时发育迟缓。在高蛋白高脂肪低碳水化合物的食物中,中肠干细胞数目明显减少,果蝇肠壁变薄,发育受到影响。将几种实验组食物按照基础食物的蛋白质、脂肪及淀粉含量进行配比混合,模拟营养的均衡配比,喂养果蝇后发现,营养成分配比均衡极大地缓解配比失衡后所造成的中肠损伤,并使果蝇的个体发育恢复均衡。【结论】食物中的营养失衡会显著影响果蝇的体重以及肠壁和肠道干细胞的数目,导致果蝇体重下降或上升,肠道细胞增殖功能紊乱,对果蝇发育产生严重影响。这些结果提示了儿童偏好零食引起的营养不良和过度肥胖及肠道功能障碍,因此建议青少年儿童不能偏好零食,要做到合理膳食,营养均衡。  相似文献   

9.
不对称细胞分裂是果蝇等无脊椎动物以及脊椎动物神经发生过程中神经干细胞分化的基本机制.命运决定子的极性定位及其选择性分配,作为不对称细胞分裂中的重要环节,在子细胞命运决定方面发挥至关重要的作用.本文综述了在中枢及外周神经系统发育期间,不对称分裂中调节Numb等命运决定子靶向定位的影响因素及命运决定子的效应机制,并简要探讨命运决定子调节机制的进化保守性.  相似文献   

10.
【目的】分离与鉴定黑腹果蝇体内醋酸杆菌,并研究其对宿主生长发育的促进作用。【方法】利用醋酸杆菌选择性培养基分离果蝇肠道醋酸杆菌;通过革兰氏染色和16S rRNA基因比对鉴定菌种;肠道定植实验验证共生关系;发育历期和生长速率实验检测其促进果蝇生长作用;免疫荧光染色技术检测肠道细胞增殖;RT-PCR法检测促生长的分子标志物和相关的信号通路。【结果】菌株为东方醋酸杆菌(Acetobacter orientalis),可以持续地定植在果蝇肠道及其培养基中,并且明显促进果蝇的生长。东方醋酸杆菌通过胰岛素信号通路增加肠分裂细胞的数量和促进蜕皮激素的分泌。【结论】东方醋酸杆菌是果蝇的一种共生菌,对果蝇肠道结构和机体发育具有重要的作用。  相似文献   

11.
生殖干细胞是具有自我更新能力的一群生殖细胞,充当配子生成的源泉。果蝇生殖干细胞的特征在于通过不对称分裂产生两个子代细胞,一个通过自我更新维持干细胞特性,另一个则进行分化。生殖干细胞的命运受其周围的微环境——"干细胞niche"控制,而"niche"的功能又通过干细胞的外源和内源信号间的相互作用来完成。小分子RNA通过复杂的RNAi途径调控基因的表达。大量证据表明生殖干细胞的维持和分化需要小分子RNA参与,小分子RNA生成的紊乱会导致干细胞的"丢失"或"未分化"。该文综述了小分子RNA对果蝇生殖干细胞命运调控的研究进展,并讨论新发现的小分子RNA在生殖干细胞命运决定中的相关功能。  相似文献   

12.
骨骼肌是人体最大的代谢器官和分泌器官,并且具有很强的再生能力。骨骼肌成体干细胞(MuSC)在骨骼肌发育、损伤再生和稳态维持中起着不可或缺的作用。当骨骼肌受到损伤时,静息状态的MuSC会被激活,进入细胞周期,进行增殖、分化,修复损伤的肌纤维。MuSC在增殖的过程中,可以通过不对称分裂产生一个干细胞用以维持MuSC库,同时产生另外一个成肌细胞参与骨骼肌损伤修复。MuSC不对称分裂异常是导致骨骼肌疾病(杜氏肌营养不良、衰老)的原因之一。该文综述了MuSC极性建立和不对称分裂调控机制以及其对骨骼肌疾病的影响。最后,该文讨论了靶向MuSC不对称分裂以治疗骨骼肌疾病的可行性。  相似文献   

13.
神经祖细胞的不对称分裂是神经发生的必要环节.近年来关于不对称分裂的研究,为果蝇及哺乳动物中枢神经系统发育期间神经祖细胞的分化机制提供了新的理解.在这一分裂模式中,纺锤体作为细胞结构的支架,受到细胞皮层极性信号的引导而改变取向,保证底部细胞命运决定子(cell fate determinants)的不对称分配.G蛋白亚基、各种接头蛋白及微管相关蛋白组成极性蛋白复合体,在纺锤体取向改变中发挥了有序的调节作用.现在细胞和分子水平探讨不对称分裂纺锤体与细胞皮层极性偶联这一标志性事件.  相似文献   

14.
不对称性细胞分裂是一个母细胞通过一次分裂,产生两个不同命运的子细胞的分裂方式,是单细胞生物向多细胞生物进化的关键一步。根据现有的证据推论,不称性细胞分裂是在器官发育过程中产生细胞多样化的一种基本方式。Numb是第一个被发现决定多细胞生物不对称细胞分裂的信号蛋白。在果蝇中,Numb通过促进Notch泛素化拮抗Notch信号通路,从而决定子细胞的命运,后来的研究表明Numb是细胞内吞调节蛋白,并用通过内吞参与调节神经细胞的粘附,轴突的生长及细胞迁移等过程;并且发现Numb与肿瘤抑制基因p53、泛素化蛋白HDM2形成三聚体抑制p53的泛素化,从而调节肿瘤的恶性程度。本文系统地分析了Numb发现的历史及后来在脊椎动物中的作用和机制,重点介绍了Numb在神经发育过程中的功能。  相似文献   

15.
不对称性细胞分裂是一个母细胞通过一次分裂,产生两个不同命运的子细胞的分裂方式,是单细胞生物向多细胞生物进化的关键一步。根据现有的证据推论,不称性细胞分裂是在器官发育过程中产生细胞多样化的一种基本方式。Numb是第一个被发现决定多细胞生物不对称细胞分裂的信号蛋白。在果蝇中,Numb通过促进Notch泛素化拮抗Notch信号通路,从而决定子细胞的命运,后来的研究表明Numb是细胞内吞调节蛋白,并用通过内吞参与调节神经细胞的粘附,轴突的生长及细胞迁移等过程;并且发现Numb与肿瘤抑制基因p53、泛素化蛋白HDM2形成三聚体抑制p53的泛素化,从而调节肿瘤的恶性程度。本文系统地分析了Numb发现的历史及后来在脊椎动物中的作用和机制,重点介绍了Numb在神经发育过程中的功能。  相似文献   

16.
刘影  刘韩菡  李胜 《昆虫知识》2009,46(5):673-677
程序化细胞死亡(programmed cell death,PCD)分为I型PCD细胞凋亡(apoptosis)和II型PCD细胞自噬(autophagy)。果蝇等完全变态昆虫有2种类型的器官:即细胞内分裂器官(如脂肪体、表皮、唾液腺、中肠、马氏管等)和有丝分裂器官(复眼、翅膀、足、神经系统等)。在昆虫变态过程中,细胞内分裂器官进行器官重建,幼虫器官大量发生细胞凋亡和细胞自噬到最后完全消亡,同时成虫器官由干细胞从新生成;而有丝分裂器官则由幼虫器官直接发育为成虫器官。在果蝇等昆虫的变态过程中,细胞凋亡和细胞自噬在幼虫器官的死亡和成虫器官的生成中发挥了非常重要的作用。文章简要介绍细胞凋亡和细胞自噬在果蝇变态过程中的生理功能和分子调控机制。  相似文献   

17.
Bam (bag-of-marbles)是果蝇两性配子发生过程中的一个调节因子, 与其他已知的蛋白质没有明显的同源关系.自1990年在果蝇中克隆了 bam基因以来, 至今还没有在其他物种中发现此基因.研究发现, Bam在两性配子发生过程中行使不同的功能.在雌性果蝇中, Bam不仅调节生殖干细胞到包囊母细胞的分化, 而且还参与包囊母细胞的不完全胞质分裂; 在雄性果蝇中, Bam参与调节精原细胞从有丝分裂向减数分裂的转换.  相似文献   

18.
【背景】动物体定殖有多种共生微生物,这些共生微生物严重影响着宿主生理和病理,日益成为研究热点之一。【目的】分离与鉴定黑腹果蝇共生菌,探究表皮葡萄球菌对黑腹果蝇的发育影响和潜在作用机制。【方法】用CEM培养基(Carotenoid expression medium)从果蝇肠道内分离细菌,通过16SrRNA基因序列比对鉴定菌株;以发育时间和幼虫表面积检测果蝇的发育时期和生长速率;利用实时定量PCR检测果蝇促前胸腺激素与胰岛素通路的激活。【结果】从果蝇体内分离到的菌株为表皮葡萄球菌,该菌可以有效定殖于果蝇的肠道。表皮葡萄球菌通过提高果蝇生长速率而显著促进其发育。在分子水平上,表皮葡萄球菌激活PTTH和胰岛素信号以刺激宿主的生长发育。【结论】表皮葡萄球菌是果蝇的一种共生菌,可以通过调控PTTH和胰岛素信号而刺激果蝇生长发育。  相似文献   

19.
OAZ基因编码在进化上保守的C2H2型O/E相关锌指蛋白,参与基因转录的调控。TGF-β信号传导通路中OAZ通过与SMAD4/R-SMAD结合形成转录复合物发挥作用;Olf1/EBF作为转录因子与OAZ相互作用来调控嗅觉上皮细胞和B淋巴细胞的分化。此外,OAZ是JAK/STAT信号通路的下游候选靶基因。但是迄今为止OAZ在果蝇大脑发育的功能还没有研究。果蝇大脑视叶作为一个相对简易操作的模型为我们揭示早期神经干细胞的增殖和转化机制创造了条件,为加快理解哺乳动物早期神经发生过程以及进一步开展神经干细胞治疗提供可能。本研究通过RNA干扰来研究OAZ在果蝇大脑发育中的作用。我们的初步实验结果表明,OAZ对果蝇大脑视叶神经上皮细胞的维持可能不是必需的,OAZ对果蝇大脑视叶神经板和脑髓神经节的发育也可能不是必需的。  相似文献   

20.
目的分离和鉴定黑腹果蝇肠道共生微生物,并研究其促进果蝇身体发育的功能。方法利用Hungate滚管技术,分离厌氧细菌;运用定植实验证明其为果蝇肠道共生菌;用悉菌实验来检测细菌对果蝇发育的影响。结果本研究从野外捕获的果蝇体内分离到蜂房哈夫尼菌(Hafnia alvei),而且证实它能够在果蝇肠道内有效地定植并且能在培养基中稳定持续地存在,说明蜂房哈夫尼菌是果蝇肠道共生菌。此外,蜂房哈夫尼菌能显著地缩短无菌果蝇的发育周期及提高生长速率。结论证明了蜂房哈夫尼菌是果蝇肠道的共生菌,并且其可以有效地促进果蝇的生长发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号