首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gel-to-liquid-crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was observed in the presence of various types of surfactants; sodium alkylsulfates, alkyltrimethylammonium bromides, alkanoyl-N-methylglucamides, and hexaethyleneglycol mono n-dodecyl ether. The phase transition was monitored by a change in scattered light intensity of the lipid suspension. For all the surfactants examined, the phase transition temperature was depressed linearly with the surfactant concentration in the measured concentration range, from which the partition coefficient, K, of the surfactant between bulk solution and lipid membrane was estimated. Except alkyltrimethylammonium bromides, log K and log CMC showed a linear relationship, which indicates that the driving force to transfer the surfactant from bulk solution to lipid membrane is a hydrophobic interaction. The addition of surfactants increased the transition width. The extent of widening the transition width was in the order of sodium alkylsulfate greater than alkyltrimethylammonium bromides greater than hexaethyleneglycol mono n-dodecyl ether; in the case of alkanoyl-N-methylglucamides, the transition width was not affected by the addition. These effects on the transition width was interpreted qualitatively in terms of the cooperativity of the transition.  相似文献   

2.
The gel-to-liquid-crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was measured in the presence of sodium octanoate (SO) (pH 3 and 10) and sodium perfluorooctanoate (SPFO) (pH uncontrolled) by monitoring the scattered light intensity of the vesicle suspension. The phase transition temperature, Tm, decreased linearly with the concentration of added SO within the measured concentration range; the uncharged form of SO (pH 3) was much more effective for the depression of Tm than the charged form (pH 10). On the other hand, with increasing SPFO concentration, levelling off of Tm was observed after depression at an initial stage. From the depression of Tm, the partition coefficients, K, of these surfactants between bulk solution and DPPC vesicle membrane were estimated and compared with those obtained previously for other surfactant systems. The value of K for charged SO fell on the straight line of log K vs. Nc plot for anionic surfactants, where Nc is the carbon number of the hydrocarbon chain of surfactants, whereas K for uncharged SO showed a large positive deviation from the straight line of the plot for non-ionic surfactants. The latter suggested that some specific interaction, presumably hydrogen bond formation, may act between the protonated carboxyl group of SO and the lipid head group. The K value estimated for SPFO was much larger than that for charged SO. This difference in the affinity for the lipid bilayer between fluorocarbon surfactant and hydrocarbon surfactant may be attributed to the difference in their hydrophobicity.  相似文献   

3.
A technique has been developed for monitoring the interaction of charged phospholipid vesicles with planar bilayer lipid membranes (BLM) by use of the antibiotics Valinomycin, Nonactin, and Monazomycin as surface-charge probes. Anionic phosphatidylserine vesicles, when added to one aqueous compartment of a BLM, are shown to impart negative surface charge to zwitterionic phosphatidylocholine and phosphatidylethanolamine bilayers. The surface charge is distributed asymmertically, mainly on the vesicular side of the BLM, and is not removed by exchange of the vesicular aqueous solution. Possible mechanisms for the vesicle-BLM interactions are discussed.  相似文献   

4.
We measured the electrophoretic mobility of multilamellar phospholipid vesicles, the 31P NMR spectra of both sonicated and multilamellar vesicles, and the conductance of planar bilayer membranes to study the binding of spermine and gentamicin to membranes. Spermine and gentamicin do not bind significantly to the zwitterionic lipid phosphatidylcholine. We measured the concentrations of gentamicin and spermine that reverse the charge on vesicles formed from a mixture of phosphatidylcholine and either phosphatidylserine or phosphatidylinositol. From these measurements, we determined that the intrinsic association constants of the cations with these negative lipids are all about 10 M-1. This value is orders of magnitude lower than the apparent binding constants reported in the literature by other groups because the negative electrostatic surface potential of the membranes and the resultant accumulation of these cations in the aqueous diffuse double layer adjacent to the membranes have not been explicitly considered in previous studies. Our main conclusion is that the Gouy-Chapman-Stern theory of the aqueous diffuse double layer can describe surprisingly well the interaction of gentamicin and spermine with bilayer membranes formed in a 0.1 M NaCl solution if the negative phospholipids constitute less than 50% of the membrane. Thus, the theory should be useful for describing the interactions of these cations with the bilayer component of biological membranes, which typically contain less than 50% negative lipids. For example, our results support the suggestion of Sastrasinh et al. [Sastrasinh, M., Krauss, T. C., Weinberg, J. M., & Humes, H. D. (1982) J. Pharmacol. Exp. Ther. 222, 350-358] that phosphatidylinositol is the major binding site for gentamicin in renal brush border membranes.  相似文献   

5.
A characterization of the structural alterations induced by melittin in model-membranes of dioleoylphosphatidic acid and egg phosphatidylglycerol is presented, based on the use of 31P-NMR, freeze-fracture electron microscopy and small angle X-ray scattering. In accordance with earlier findings on the cardiolipin-melittin system, melittin is found to have an inverted phase inducing effect on these negatively charged lipids, in contrast to the influence on zwitterionic phospholipids. In phosphatidic acid this is expressed in the formation of an HII phase; in phosphatidylglycerol a less ordered, non-lamellar structure with low water content is adopted.  相似文献   

6.
The effect of surfactants on the "fluidity" of dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was studied by means of the fluorescence depolarization technique with fatty acid fluorescent probes, in which the anthroyloxy group is introduced at different positions along the acyl chain. Three types of surfactants were examined; anionic sodium alkylsulfates, cationic alkyltrimethylammonium chlorides, and non-ionic alkanoyl-N-methylglucamides (MEGA-n). Perturbing effects of the surfactants depended on both the alkyl chain-length and the type of head group. Sodium alkylsulfates with octyl- and decyl-chain and alkyltrimethylammonium chlorides with octyl-, decyl- and dodecyl-chain did not affect the membrane fluidity when incorporated in the membrane, whereas sodium dodecylsulfate and tetradecyltrimethylammonium chloride decreased the membrane fluidity at both gel and liquid crystalline states of the membrane. All the MEGA series surfactants decreased the membrane fluidity, whose perturbing potency was in the order of MEGA-8 less than MEGA-9 approximately equal to MEGA-10. The perturbation at different depths in the membrane by sodium dodecylsulfate and MEGA-9 was also examined. No significant change in the fluidity gradient across the membrane was induced by the addition of these surfactants.  相似文献   

7.
Effect of polymyxin B on the planar bilayer lipid membranes (BLM) formed from synthetic phosphatidic acid has been studied. The addition of cholesterol to phospholipid in molar ratio 1 : 2 was followed by an increase of BLM conductance from 2 x 10(-8) to 3 x 10(-7) Ohm-1 cm-2. It was suggested that the observed increase of conductance was due to the fluidity of the membrane matrix in the presence of cholesterol. It was shown that 10(-6)--10(-5) M polymyxin slightly affected the conductance of BLM from phosphatidic acid. It was found that polymyxin increased conductance of negatively charged BLM modified by palmitic acid from 10(-8) to 10(-6) Ohm-1 cm-2.  相似文献   

8.
9.
One of the side chains of Orn residues in gramicidin S (GS) was connected with alanine (AGS), sarcosine (SGS), or histidine (HGS) residue, aiming at developing membrane-active artificial enzymes by virtue of the membrane-associating property of GS. The conformation of the GS analogs was similar to that of GS. However, the affinity of GS and its analogs for dipalmitoylphosphatidylcholine (DPPC) vesicles decreased in the order of GS greater than SGS greater than HGS congruent to AGS. The addition of GS analogs at 10 microM to DPPC vesicles decreased the membrane fluidity, indicating that GS analogs did not disrupt the vesicular structure of DPPC vesicles. On the other hand, GS analogs enhanced carboxyfluorescein-leakage from DPPC vesicles. It was therefore considered that the GS analogs induced the phase-separation of the lipid bilayer membrane. Hydrolytic reactions of HGS in the presence of DPPC vesicles were studied using N-methylindoxyl alkanoate as substrate. HGS reacted only with N-methylindoxyl hexanoate below the phase-transition temperature of the membrane. The substrate specificity of HGS was ascribed to the condensation of HGS in the neighbourhood of the substrate in the lipid bilayer membrane due to the phase-separation below the phase-transition temperature of the membrane.  相似文献   

10.
11.
The statistical analysis of current fluctuations in unmodified bilayer lipid membranes at the phase transition temperature was made. An exponential distribution of current fluctuations was revealed.  相似文献   

12.
The interaction of Aluminum with phosphatidyl serine lipid vesicles containing variable amounts of phosphatidyl ethanolamine, phosphatidyl choline and cholesterol has been studied by lipid phase separation monitored by fluorescence quenching. The interaction of Al3+ with neutral phospholipid membranes has also been investigated. Maximal lipid phase separation can be demonstrated in mixed phosphatidyl ethanolamine-cholesterol vesicles when using concentrations of aluminum between 87.5 and 125 microM. Millimolar concentrations of Ca2+, Mn2+, Cd2+ and Zn2+ were without any effect. Aluminum also induced fusion of phospholipid membranes monitored by resonance energy transfer between N-(7-nitro-2,1,3, benzoxadiazol-4 yl) phosphatidyl ethanolamine and N-(lissamine Rhodamine B-sulfonyl) phosphatidyl ethanolamine, either when containing low amounts of phosphatidyl serine (12.5%) or without any negatively charged phospholipid. Aluminum-induced fusion of liposomes was also monitored by the fluorescence of the terbium-dipicolinic acid complex (Tb-DPA3-) formed during fusion of vesicles containing either Tb-(citrate)6- complex or sodium salt of dipicolinic acid.  相似文献   

13.
The effect of synthetic polycations, polyallylamine, and polyethylenimine, on liposomes containing phosphatidylserine was investigated along with that of polylysine and divalent cations. The addition of polycations caused aggregation of sonicated vesicles composed of phosphatidylserine and phosphatidylcholine (molar ratio 1:4) as determined by measuring the turbidity changes. Liposomal turbidity increased 10 times compared with that of control liposomes at charge ratios of polymer/vesicle from 0.23 (polylysine) to 2.5 (linear polyethylenimine), while the turbidity was unchanged by the addition of Ca2+ or Mg2+ at charge ratios up to 500. These polycations also induced intermixing of liposomal membranes as indicated by resonance energy transfer between fluorescent lipids incorporated in lipid bilayers, without inducing drastic permeability changes as determined from the calcein release. Fifty percent intermixing of liposomes (0.05 mM as lipid concentration) was induced by these polycations at charge ratios of around 1.0. However, the highest resonance energy transfer was produced by the addition of polyallylamine, which caused multicycles of membrane intermixing between vesicles. Polycation-induced membrane intermixing and permeability changes of phosphatidylserine liposomes were also investigated. At charge ratios of around 1.0, these polymers caused resonance energy transfer of fluorescent lipids incorporated in separate vesicles; however, polyallylamine and branched polyethylenimine also caused permeability increases of liposomal membranes. Membrane intermixing and permeability changes of phosphatidylserine vesicles induced by polyallylamine were dependent on the polymer/vesicle charge ratio, and were different from those induced by Ca2+ since the latter caused half-maximal membrane intermixing or permeability change of phosphatidylserine vesicles at about 1 mM at the liposomal concentrations investigated.  相似文献   

14.
The pressure dependence of the lipid bilayer phase transition   总被引:2,自引:0,他引:2  
K R Srinivasan  R L Kay  J F Nagle 《Biochemistry》1974,13(17):3494-3496
  相似文献   

15.
A new method of membrane reconstitution was developed by fusion of channel protein containing vesicles with planar bilayer membranes. The fusion process only occurred below and near the phase transition temperature of the lipid used. We obtained the following results: 1. Our system is solvent-free and vesicles do not come into contact with the air/water interface. This obviates a possible denaturation of hydrophobic proteins. 2. Channel forming proteins and protein complexes, respectively, are active in a frozen lipid matrix. 3. We detected an unknown channel in cilia fragments. 4. Purified acetylcholine receptors form fluctuating channels in a membrane consisting of a pure synthetic lecithin (two component system).  相似文献   

16.
A new method of membrane reconstitution was developed by fusion of channel protein containing vesicles with planar bilayer membranes. The fusion process only occurred below and near the phase transition temperature of the lipid used. We obtained the following results: 1. Our system is solvent-free and vesicles do not come into contact with the air/water interface. This obviates a possible denaturation of hydrophobic proteins. 2. Channel forming proteins and protein complexes, respectively, are active in a frozen lipid matrix. 3. We detected an unknown channel in cilia fragments. 4. Purified acetylcholine receptors form fluctuating channels in a membrane consisting of a pure synthetic lecithin (two component system).  相似文献   

17.
The phase transitions of dipalmitoylphosphatidylcholine (DPPC) bilayer membrane were observed by means of differential scanning calorimetry (DSC) as a function of the concentration of local anesthetics, dibucaine (DC x HCl), tetracaine (TC x HCl), lidocaine (LC x HCl) and procaine hydrochlorides (PC x HCl). LC x HCl and PC x HCl depressed monotonously the temperatures of the main- and pre-transition of DPPC bilayer membrane. The enthalpy changes of both transitions decreased slightly with an increase in anesthetic concentration up to 160 mmol kg(-1). In contrast, the addition of TC x HCl or DC x HCl, having the ability to form a micelle by itself, induced the complex phase behavior of DPPC bilayer membrane including the vesicle-to-micelle transition. The depression of both temperatures of the main- and pre-transition, which is accompanied with a decrease in enthalpy, was observed by the addition of TC x HCl up to 21 mmol kg(-1) or DC x HCl up to 11 mmol kg(-1). The pretransition disappeared when these concentrations of anesthetic were added, and the interdigitated gel phase appeared above these concentrations. The appearance of the interdigitated gel phase, instead of the ripple gel phase, brings about the stabilization of the gel phase by 1.8-2.4 kcal mol(-1). In the concentration range of 70-120 mmol kg(-1) TC x HCl (or 40-60 mmol kg(-1) DC x HCl), the enthalpy of the main transition exhibited a drastic decrease, resulting in the virtual disappearance of the main transition. This process includes the decrease in vesicle size with increasing anesthetic concentration, resulting in the mixed micelle of DPPC and anesthetics. Therefore, in this range of anesthetic concentration, the DPPC vesicle solubilized an anesthetic which coexists with the DPPC-anesthetic mixed micelle. Above the concentration of 120 mmol kg(-1) TC x HCl (or 60 mmol kg(-1) DC x HCl), there exists the DPPC-anesthetic mixed micelle. Two types of new transitions concerned with the mixed micelle of DPPC and micelle-forming anesthetics were observed by DSC.  相似文献   

18.
The effect of the electric field on the phase transition temperature (Tc) of acidic 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) and 1,2-dipalmitoyl-sn-glycero-3-thionphosphate (thion-DPPA) and zwitterion, i.e. 1,2-dipalmitoyl-rac-3-phosphocholine and 1,2-distearoyl-rac-glycero-3-phosphocholine (DPPC and DSPC), lipids has been investigated. The phase transition was detected using the jump-like increase effect in the conductance of the planar bilayer membrane. A voltage increase to 150 mV has been shown to increase the phase transition temperature in a bilayer lipid membrane (BLM) of phosphatidic acids (DPPA and thion-DPPA) by 8-12 degrees C while the transition temperature in the bilayer of zwitterion lipids (DPPC and DSPC) increases insignificantly. The increasing of Tt in BLM of acidic lipids is attributed to the voltage-induced changes in the molecule packing density.  相似文献   

19.
We propose classifying surfactants with respect to their effect on membrane order, which is derived from the time-resolved fluorescence anisotropy of DPH. This may help in understanding why certain surfactants, including biosurfactants such as antimicrobial lipopeptides and saponins, often show a superior performance to permeabilize and lyse membranes and/or a better suitability for membrane protein solubilization. Micelle-forming surfactants induce curvature stress in membranes that causes disordering and, finally, lysis. Typical detergents such as C(12)EO(8), octyl glucoside, SDS, and lauryl maltoside initiate membrane lysis after reaching a substantial, apparently critical extent of disordering. In contrast, the fungicidal lipopeptides surfactin, fengycin, and iturin from Bacillus subtilis QST713 as well as digitonin, CHAPS, and lysophosphatidylcholine solubilize membranes without substantial, overall disordering. We hypothesize they disrupt the membrane locally due to a spontaneous segregation from the lipid and/or packing defects and refer to them as heterogeneously perturbing. This may account for enhanced activity, selectivity, and mutual synergism of antimicrobial biosurfactants and reduced destabilization of membrane proteins by CHAPS or digitonin. Triton shows the pattern of a segregating surfactant in the presence of cholesterol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号