首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lee H  Zeng F  Dunne M  Allen C 《Biomacromolecules》2005,6(6):3119-3128
Six amphiphilic diblock copolymers based on methoxy poly(ethylene glycol) (MePEG) and poly(delta-valerolactone) (PVL) with varying hydrophilic and hydrophobic block lengths were synthesized via a metal-free cationic polymerization method. MePEG-b-PVL copolymers were synthesized using MePEG with Mn = 2000 or Mn = 5000 as the macroinitiator. 1H NMR and GPC analyses confirmed the synthesis of diblock copolymers with relatively narrow molecular weight distributions (Mn/Mw = 1.05-1.14). DSC analysis revealed that the melting temperatures (Tm) of the copolymers (47-58 degrees C) approach the Tm of MePEG as the PVL content is decreased. MePEG-b-PVL copolymer aggregates loaded with the hydrophobic anti-cancer drug paclitaxel were found to have effective mean diameters ranging from 31 to 970 nm depending on the composition of the copolymers. A MePEG-b-PVL copolymer of a specific composition was found to form drug-loaded micelles of 31 nm in diameter with a narrow size distribution and improve the apparent aqueous solubility of paclitaxel by more than 9000-fold. The biological activity of paclitaxel formulated in the MePEG-b-PVL micelles was confirmed in human MCF-7 breast and A2780 ovarian cancer cells. Furthermore, the biocompatibility of the copolymers was established in CHO-K1 fibroblast cells using a cell viability assay. The in vitro hydrolytic and enzymatic degradation of the micelles was also evaluated over a period of one month. The present study indicates that the MePEG-b-PVL copolymers are suitable biomaterials for hydrophobic drug formulation and delivery.  相似文献   

3.
Producing some small hydrophobic molecules in microbes is challenging. Often these molecules cannot cross membranes, and thus their production may be limited by lack of storage space in the producing organism. This study reports a new technology for in vivo storage of valuable hydrophobic products in/on biopolymer bodies in Escherichia coli. A biodegradable and biocompatible polyester – poly (3-hydroxybutyrate) (PHB) – was selected as the intracellular storage vessel to encapsulate lycopene, which is a chromogenic model compound. The hydrophobic interaction between lycopene and PHB was verified by using in vitro binding test and sucrose density gradient centrifugation. Further in vivo characterization was performed by using Confocal Laser Scanning Microscopy (CLSM). The images validated the in vivo co-localization between PHB granules and lycopene. The images also showed that lycopene aggregated in bacteria that did not produce PHB, which may challenge the commonly accepted hypothesis that most lycopene molecules are stored in cell membranes of recombinant host. We also confirmed that producing PHB did not negatively affect lycopene biosynthesis in the E. coli strains and collected data suggesting that PHB titer and lycopene titer were positively correlated when the cells were engineered to co-produce them. The biopolymers that encapsulated hydrophobic molecules could have many useful applications, especially in controlled release because the polymers are biodegradable, and the encapsulated products would be released during the polymer degradation.  相似文献   

4.
Two synthetic routes to folic acid (FA)-functionalized diblock copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and either 2-(dimethylamino)ethyl methacrylate [DMA] or 2-(diisopropylamino)ethyl methacrylate [DPA] were explored. The most successful route involved atom transfer radical polymerization (ATRP) of MPC followed by the tertiary amine methacrylate using a 9-fluorenylmethyl chloroformate (Fmoc)-protected ATRP initiator. Deprotection of the Fmoc groups produced terminal primary amine groups, which were conjugated with FA to produce two series of novel FA-functionalized biocompatible block copolymers. Nonfunctionalized MPC-DMA diblock copolymers have been previously shown to be effective synthetic vectors for DNA condensation; thus, these FA-functionalized MPC-DMA diblock copolymers appear to be well suited to gene therapy applications based on cell targeting strategies. In contrast, the FA-MPC-DPA copolymers are currently being evaluated as pH-responsive micellar vehicles for the delivery of highly hydrophobic anticancer drugs.  相似文献   

5.
Li G  Liu J  Pang Y  Wang R  Mao L  Yan D  Zhu X  Sun J 《Biomacromolecules》2011,12(6):2016-2026
The hydrophobic block of polymeric micelles formed by amphiphilic copolymers has no direct therapeutical effect, and the metabolites of these hydrophobic segments might lead to some unexpected side effects. Here the hydrophobic core of polymeric micelles is replaced by highly water-insoluble drugs themselves, forming a new micellar drug delivery system. By grafting hydrophobic drugs of paclitaxel (PTX) onto the surface of hydrophilic hyperbranched poly(ether-ester) (HPEE), we constructed an amphiphilic copolymer (HPEE-PTX). HPEE-PTX could self-assemble into micellar nanoparticles in aqueous solution with tunable drug contents from 4.1 to 10.7%. Moreover, the hydrolysis of HPEE-PTX in serum resulted in the cumulative release of PTX. In vivo evaluation indicated that the dosage toleration of PTX in mice had been improved greatly and HPEE-PTX micellar nanoparticles could be used as an efficient prodrug with satisfactory therapeutical effect. We believe that most of the lipophilic drugs could improve their characters through this strategy.  相似文献   

6.
Micelles of a model amphiphilic block copolymer, poly(hydroxyethyl acrylate)-block-poly(n-butyl acrylate) (PHEA-b-PBA), synthesized via the RAFT polymerization were cross-linked by copolymerization of a degradable cross-linker from the living RAFT-end groups of PBA chains, yielding a cross-linked core without affecting significantly the original micelle size. The cross-linker incorporation into the micelles was evidenced via physicochemical analysis of the copolymer unimers formed upon acidic cleavage of the cross-linked micelles. High doxorubicin loading capacities (60 wt %) were obtained. Hydrolysis of less than half of the cross-links in the core was found to be sufficient to release doxorubicin faster at acidic pH compared to neutral pH. The system represents the first example of core-cross-linked micelles that can be destabilized (potentially both above and below CMC) by the pH-dependent cleavage of the cross-links and the subsequent polarity change in the core to enable the release of hydrophobic drugs entrapped inside the micelle.  相似文献   

7.
Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF) and dichloromethane (CH2Cl2). PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment.  相似文献   

8.
The reported efficiencies of drug encapsulation into liposomes range from less than 0.1% to more than 10% per micromole phospholipid, depending on the nature of the drug and of the liposome employed. We have sought to investigate some of the factors which control the efficiency of drug encapsulation. We have found that most polar drugs are sequestered within the internal aqueous compartment of the liposomes, while nonpolar drugs can bind to the liposome membrane in addition to being sequestered, thus accounting for their higher efficiencies of encapsulation. The encapsulation of nonpolar drugs, but not of polar drugs, is very sensitive to the physical characteristics of the liposome membrane; in particular, a fluid membrane favors the efficient encapsulation of nonpolar compounds. The drug cytosine arabinoside is anomalous in that this highly polar compound seems to interact with the liposome membrane at physiological conditions of pH and ionic strength, thus allowing it to be encapsulated with high efficiency.  相似文献   

9.
Although liposomal nanoparticles are one of the most versatile class of drug delivery systems, stable liposomal formulation of small neutral drug molecules still constitutes a challenge due to the low drug retention of current lipid membrane technologies. In this study, we evaluate the encapsulation and retention of seven nucleoside analog-based drugs in liposomes made of archaea-inspired tetraether lipids, which are known to enhance packing and membrane robustness compared to conventional bilayer-forming lipids. Liposomes comprised of the pure tetraether lipid generally showed improved retention of drugs (up to 4-fold) compared with liposomes made from a commercially available diacyl lipid. Interestingly, we did not find a significant correlation between the liposomal leakage rates of the molecules with typical parameters used to assess lipophilicity of drugs (such logD or topological polar surface area), suggesting that specific structural elements of the drug molecules can have a dominant effect on leakage from liposomes over general lipophilic character.  相似文献   

10.
Huang X  Lowe TL 《Biomacromolecules》2005,6(4):2131-2139
A series of hydrogels with both thermoresponsive and completely biodegradable properties was developed for aqueous encapsulation and controlled release of hydrophilic drugs in response to temperature change. The hydrogels were prepared in phosphate-buffered saline (pH 7.4) through free radical polymerization of N-isopropylacrylamide (NIPAAm) monomer and a dextran macromer containing multiple hydrolytically degradable oligolactate-2-hydroxyethyl methacrylate units (Dex-lactateHEMA). Swelling measurement results demonstrated that four gels with feeding weight ratios of NIPAAm:Dex-lactateHEMA = 7:2, 6:3, 5:4, and 4:5 (w/w) were thermoresponsive by showing a lower critical solution temperature at approximately 32 degrees C. The swelling and degradation of the hydrogels strongly depended on temperature and hydrogel composition. An empirical mathematical model was established to describe the fast water absorption at the early stage and deswelling at the late stage of the hydrogels at 37 degrees C. Two hydrophilic model drugs, methylene blue and bovine serum albumin, were loaded into the hydrogels during the synthesis process. The molecular size of the drugs, the hydrophilicity and degradation of the hydrogels, and temperature played important roles in controlling the drug release.  相似文献   

11.
You J  Hu FQ  Du YZ  Yuan H 《Biomacromolecules》2007,8(8):2450-2456
Herein, polymeric micelles with glycolipid-like structure and about 40 nm diameter are prepared by self-aggregation from stearate-grafted chitosan oligosaccharides in aqueous medium. The micelles, with high degree of substitution (DS), present specific spatial structure with multiple hydrophobic "minor cores", and thus obtain excellent internalization into cancer cells and accumulation in cytoplasm. Furthermore, the micelles showed pH-sensitive properties, thus favoring intracellular delivery of encapsulated drug via endocytosis. The cell cytotoxicity of paclitaxel encapsulated in micelles was improved sharply and contributed to the increased intracellular delivery of the drug. The present micelles are a promising carrier candidate for targeting therapy of antitumor drugs with a cytoplasmic molecule target.  相似文献   

12.
The three-dimensional structure of PrP110-136, a peptide encompassing the conserved hydrophobic region of the human prion protein, has been determined at high resolution in dodecylphosphocholine micelles by NMR. The results support the conclusion that the (Ctm)PrP, a transmembrane form of the prion protein, adopts a different conformation than the reported structures of the normal prion protein determined in solution. Paramagnetic relaxation enhancement studies with gadolinium-diethylenetriaminepentaacetic acid indicated that the conserved hydrophobic region peptide is not inserted symmetrically in the micelle, thus suggesting the presence of a guanidium-phosphate ion pair involving the side chain of the terminal arginine and the detergent headgroup. Titration of dodecylphosphocholine into a solution of PrP110-136 revealed the presence of a surface-bound species. In addition, paramagnetic probes located the surface-bound peptide somewhere below the micelle-water interface when using the inserted helix as a positional reference. This localization of the unknown population would allow a similar ion pair interaction.  相似文献   

13.
In the present study, the efficacy of Basella alba L. (commonly known as Indian spinach) mucilage (BAM) was explored for the first time towards the encapsulation of hydrophobic antioxidants. The hydrophobic antioxidants were encapsulated into the BAM matrix by modified non-solvent precipitation method and the encapsulated systems were fully characterized on the basis of TGA, DLS and SEM data. Interactions between the components of BAM matrix and the hydrophobic antioxidants are the key factors for the efficient encapsulation process. These interactions were studied with the help of spectroscopic techniques. The BAM-encapsulated antioxidants showed high pH and photo-stability. Moreover, the hydrophobic antioxidants after their encapsulation in the BAM matrix showed enhanced water solubility and hence, bioactivity in aqueous medium. Thus, BAM may be explored in future as an ideal candidate for the encapsulation and delivery of the hydrophobic bioactive compounds in cellular medium.  相似文献   

14.
A novel pH-sensitive amphiphilic copolymer brush poly(methyl methacrylate-co-methacrylic acid)-b-poly(poly(ethylene glycol) methyl ether monomethacrylate) [P(MMA-co-MAA)-b-PPEGMA] was defined and synthesized by atom transfer radical polymerization (ATRP) technique. The molecular structures and characteristics of this copolymer and its precursors were confirmed by (1)H NMR, FT-IR, and GPC. The CMC of P(MMA-co-MAA)-b-PPEGMA in aqueous medium was determined to be 1-4 mg/L. This copolymer could self-assemble into micelles in aqueous solution with an average size of 120-250 nm determined by DLS. The morphologies of the micelles were found to be spherical by SEM and TEM. Ibuprofen (IBU), a poorly water-soluble drug, was selected as the model drug and wrapped into the core of micelles via dialysis method. Drug entrapment efficiency reached to 90%. The in vitro release behavior of IBU from these micelles was pH-dependent. The cumulative release percent of IBU was less than 20% of the initial drug content in simulated gastric fluid (SGF, pH 1.2) over 12 h, but 90% was released in simulated intestinal fluid (SIF, pH 7.4) within 6 h. The release profiles showed that the P(MMA-co-MAA)-b-PPEGMA micelles could inhibit the premature burst drug release under the intestinal conditions. All the results indicate that the P(MMA-co-MAA)-b-PPEGMA micelle may be a potential oral drug delivery carrier for poorly water-soluble drugs.  相似文献   

15.
Molecules, whose pK(a) values can be easily fine-tuned by their microenvironment, are expected to be profoundly affected by the heterogeneous environments of membranes. Membrane parameters can have a strong effect in choosing a particular structural form of a molecule for incorporation/interaction. A case study has been presented for piroxicam, a non-steroidal anti-inflammatory drug of oxicam group, whose targets are cyclooxygenases, which are membrane active proteins. The structural dynamism of piroxicam is reflected in the ease with which it can switchover or convert from one prototropic form to the other guided by its environment. In this work we have studied the effect of varying hydrophobic chain length and surface charges in fine-tuning the interaction of piroxicam with micelles. Interaction of piroxicam with three types of micelles with identical negatively charged head groups and varying tail lengths viz., sodium dodecyl sulfate (S12S), sodium decyl sulfate (S10S) and sodium octyl sulfate (S8S) shows that there is a shift in the apparent pK(a) in the direction that favors the switchover or conversion from the anionic form to the global neutral form. The binding constants of piroxicam with three micelles show a linear dependence on chain length. Interaction was also studied with micelles having oppositely charged head groups and different chain lengths viz., dodecyl N,N,N-trimethyl ammonium bromide (DTAB) and cetyl N,N,N-trimethyl ammonium bromide (CTAB). For micelles having identical chain lengths but oppositely charged head groups viz., S12S and DTAB, pK(a) shifts in two opposite directions compared to that in the absence of any surfactant. This is expected when electrostatic force is the only driving force. This case study demonstrates the effect of hydrophobic chain length and surface charges in fine-tuning the equilibrium between different structural forms of piroxicam. Our results also imply that for structurally dynamic drugs like piroxicam the nature of the biomembranes, characterized by different membrane parameters, should play a crucial role in choosing a particular structural form of the drug that will be finally presented to their targets.  相似文献   

16.
A method has been developed to obtain micelles based on amphiphilic chitosan derivatives which were synthesized by grafting hydrophobic stearoyl, palmitoyl and octanoyl aliphatic chains onto molecules of chitosan with degrees of substitution from 0.9% to 29.6%. The N-fatty acylations were carried out by reacting carboxylic anhydride with chitosan in dimethyl sulfoxide. The chitosan derivative-based micelles were spherical as observed by transmission electron microscope (TEM). Their sizes were in the range of 140–278 nm as measured by dynamic light scattering (DLS). The micellar critical aggregation concentration (CAC) can reach 1.99 × 10−3 mg/mL, indicating that they are more stable upon dilution than micelles based on other chitosan derivatives such as deoxycholic acid-modified chitosan reported previously.  相似文献   

17.
Surface tension (gamma) and time resolved fluorescence quenching (TRFQ) measurements have been performed on the binary mixtures of monomeric as well as dimeric alkylammonium bromides with l-alpha-dimyristoylphosphatidycholine (DMPC) and L-alpha-dipalmitoylphosphatidycholine (DPPC). The critical micelle concentration (cmc) has been evaluated from the gamma measurements. The gamma plots show two breaks in the gamma versus [total surfactant] curves in most of the cases. The first break (C1) has been attributed to the mixed vesicle formation process. The break down of the vesicles leads to the mixed micellization between the surfactant and phospholipid monomers at the second break (C2). The amount of surfactant used in the vesicle breakdown process (DeltaC) increases linearly with the increase in the amount of phospholipid and depends significantly on the hydrophobicities of the cationic components. The surface area per molecule (a) evaluated from the gamma plots indicates compact monolayer formation in the case of monomeric surfactants with lower hydrophobicities and reverse is observed for dimeric surfactants. The pyrene life time (tau) of the solubilized pyrene in the hydrophobic environment of mixed micelles, fully supports the conclusion that derived from a.  相似文献   

18.
目的:优化聚唾液酸发酵过程的搅拌转速.方法:比较不同搅拌转速对大肠杆菌Escherichia coli K235分批发酵生产聚唾液酸过程的影响.结果:根据发酵前、后期菌体细胞比生长速率和聚唾液酸比合成速率达到最大值所需搅拌转速的不同,提出了两阶段搅拌转速控制策略:发酵前期(0~15h)控制搅拌转速500r/min,发酵中后期控制搅拌转速700r/min.结论:两阶段搅拌转速控制策略使聚唾液酸产量达到3 966mg/L,比恒定搅拌转速500r/min和700r/min分别提高了31.8%和49.3%.将两阶段搅拌转速控制策略与分批补料发酵技术结合,聚唾液酸产量提高到5 108mg/L,山梨醇的转化率达到0.12g/g.  相似文献   

19.
Liu X  Ma R  Shen J  Xu Y  An Y  Shi L 《Biomacromolecules》2012,13(5):1307-1314
Oral administration of ionic drugs generally encounters with significant fluctuation in plasma concentration due to the large variation of pH value in the gastrointestinal tract and the pH-dependent solubility of ionic drugs. Polymeric complex micelles with charged channels on the surface provided us with an effective way to reduce the difference in the drug release rate upon change in pH value. The complex micelles were prepared by self-assembly of PCL-b-PAsp and PCL-b-PNIPAM in water at room temperature with PCL as the core and PAsp/PNIPAM as the mixed shell. With an increase in temperature, PNIPAM collapsed and enclosed the PCL core, while PAsp penetrated through the PNIPAM shell, leading to the formation of negatively charged PAsp channels on the micelle surface. Release behavior of ionic drugs from the complex micelles was remarkably different from that of usual core-shell micelles where diffusion and solubility of drugs played a key role. Specifically, it was mainly dependent on the conformation of the PAsp chains and the electrostatic interaction between PAsp and drugs, which could partially counteract the influence of pH-dependent diffusion and solubility of drugs. As a result, the variation of drug release rate with pH value was suppressed, which was favorable for acquiring relatively steady plasma drug concentration.  相似文献   

20.
Polysialic acid (polySia) forms linear chains which are usually attached to the external surface of the plasma membrane mainly through the Neural Cell Adhesion Molecule (NCAM) protein. It is exposed on neural cells, several types of cancer cells, dendritic cells, and egg and sperm cells. There are several lipid raft-related phenomena in which polySia is involved; however the mechanisms of polySia action as well as determinants of its localization in lipid raft microdomains are still unknown, although the majority of NCAM molecules in the liquid-ordered raft membrane fractions of neural cells appear to be polysialylated. Here we investigate the affinity of polySia (both soluble and NCAM-dependent plasma membrane-bound) for liquid-ordered- and liquid-disordered regions of lipid vesicle and neuroblastoma cell membranes. Our studies indicate that polySia chains have a higher affinity for ordered regions of membranes as determined by the dissociation constant values for polySia-lipid bilayer complex, the fluorescence intensity of polySia bound to giant vesicles, the polySia-to-membrane FRET signal at the plasma membrane of live cells, and the decrease of the FRET signals after Endo-N treatment of the cells. These results suggest that polysialylation may be one of the determinants of protein association with liquid-ordered membrane lipid raft domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号