首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report establishes the conditions for monitoring the intrinsic Trp phosphorescence of proteins encapsulated in silica hydrogels and demonstrates the usefulness of the delayed emission for examining potential perturbations of protein structure-dynamics by the silica matrix. Phosphorescence measurements were conducted both in low temperature (140 K) glasses and at ambient temperature on the proteins apo- and Cd-azurin, alkaline phosphatase and liver alcohol dehydrogenase together with the complexes of liver alcohol dehydrogenase with coenzyme analogs ADPR and H(2)NADH. While spectral shifts and broadening indicate that alterations of the Trp microenvironment are more marked on superficial regions of the macromolecule the decay kinetics of deeply buried chromophores show that the internal flexibility of the polypeptide in two out of three cases is significantly affected by silica entrapment. Both the intrinsic lifetime and the bimolecular acrylamide quenching constant confirm that, relative to the aqueous solution, in hydrogels the globular fold is more rigid with azurin, looser with alcohol dehydrogenase and substantially unaltered with alkaline phosphatase. It was also noted that large amplitude structural fluctuations, as those involved in coenzyme binding to alcohol dehydrogenase or thermally activated in alkaline phosphatase, were not restricted by gelation. Common features of the three silica entrapped proteins are pronounced conformational heterogeneity and immobilization of rotational motions of the macromolecule in the long time scale of seconds.  相似文献   

2.
The effects of two single-point cavity-forming mutations, F110S and I7S, on the internal dynamics of azurin from Pseudomonas aeruginosa were probed by the phosphorescence emission of Trp-48, deeply buried in the compact hydrophobic core of the macromolecule. Changes in flexibility of the protein matrix around the chromophore were monitored by the intrinsic phosphorescence lifetime (tau(0)) whereas more general effects on structural fluctuations were deduced from the phosphorescence acrylamide quenching rate constant (k(q)), which measures the diffusion of the solute through the protein fold. The results show a spectacular, 4-5 orders of magnitude, increase of k(q) emphasizing that large amplitude structural fluctuations permitting acrylamide migration to the protein core have been drastically enhanced in each azurin mutant. The large, 12-15 kcal/mol, decrease in the activation enthalpy associated to k(q) suggests that the rate enhancement is caused, rather than through a generalized increase of protein flexibility, by the elimination of an inner barrier to the diffusion process. According to tau(0) the chromophore environment is more fluid with I7S but strikingly more rigid with F110S, demonstrating that when internal cavities are formed local effects on the mobility at the mutation site are unpredictable. Both tau(0) and k(q) reveal a structure tightening role of bound Cd(2+) that correlates with the increase in stability from apo- to holo-azurin. While these alterations in internal dynamics of azurin do not seem to play a role on electron transfer through the central region, the enhanced migration of acrylamide emphasizes that cavities may be critical for the rapid diffusion of substrates to buried, solvent inaccessible sites of enzymes.  相似文献   

3.
Oxygen quenching of protein phosphorescence and activation enthalpies for the structural fluctuations underlying O2 and acrylamide diffusion were determined for RNase T1, glyceraldehyde-3-phosphate dehydrogenase and beta-lactoglobulin, which have the phosphorescing residues located in relatively solvent-exposed and flexible regions of the polypeptide. The results, compared with those obtained for proteins characterised by a very rigid environment, established that kqO2 was directly correlated to the flexibility of the protein matrix surrounding the chromophore. While the migration of acrylamide was characterised by delta H(double dagger), which was strongly dependent on the fluidity of the structure about the Trp residue, the values of the activation enthalpies for the oxygen migration of all the proteins studied were rather similar, approximately 10 kcal mol(-1), in spite of the depth of the chromophore and the rigidity of its environment. The implications of these findings for the migration of small solutes inside proteins have been discussed.  相似文献   

4.
Quenching of Trp phosphorescence in proteins by diffusion of solutes of various molecular sizes unveils the frequency-amplitude of structural fluctuations. To cover the sizes gap between O2 and acrylamide, we examined the potential of acrylonitrile to probe conformational flexibility of proteins. The distance dependence of the through-space acrylonitrile quenching rate was determined in a glass at 77 K, with the indole analog 2-(3-indoyl) ethyl phenyl ketone. Intensity and decay kinetics data were fitted to a rate, k(r) = k0 exp[−(rr0)/re], with an attenuation length re = 0.03 nm and a contact rate k0 = 3.6 × 1010 s−1. At ambient temperature, the bimolecular quenching rate constant (kq) was determined for a series of proteins, appositely selected to test the importance of factors such as the degree of Trp burial and structural rigidity. Relative to kq = 1.9 × 109 M−1s−1 for free Trp in water, in proteins kq ranged from 6.5 × 106 M−1s−1 for superficial sites to 1.3 × 102 M−1s−1 for deep cores. The short-range nature of the interaction and the direct correlation between kq and structural flexibility attest that in the microsecond-second timescale of phosphorescence acrylonitrile readily penetrates even compact protein cores and exhibits significant sensitivity to variations in dynamical structure of the globular fold.  相似文献   

5.
The effects of heavy water (D(2)O) on internal dynamics of proteins were assessed by both the intrinsic phosphorescence lifetime of deeply buried Trp residues, which reports on the local structure about the triplet probe, and the bimolecular acrylamide phosphorescence quenching rate constant that is a measure of the average acrylamide diffusion coefficient through the macromolecule. The results obtained with several protein systems (ribonuclease T1, superoxide dismutase, beta-lactoglobulin, liver alcohol dehydrogenase, alkaline phosphatase, and apo- and Cd-azurin) demonstrate that in most cases D(2)O does significantly increase the rigidity the native structure. With the exception of alkaline phosphatase, the kinetics of the structure tightening effect of deuteration are rapid compared with the rate of H/D exchange of internal protons, which would then assign the dampening of structural fluctuations in D(2)O to a solvent effect, rather than to stronger intramolecular D bonding. Structure tightening by heavy water is generally amplified at higher temperatures, supporting a mostly hydrophobic nature of the underlying interaction, and under conditions that destabilize the globular fold.  相似文献   

6.
Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.  相似文献   

7.
Pressure is an effective modulator of protein structure and biological function. The influence of hydrostatic pressure (相似文献   

8.
The effect of hydrostatic pressure (0-2.6 kbar) on the acrylamide quenching of the fluorescence of indole derivatives and several single-tryptophan-containing proteins has been studied using phase fluorometry at 25 degrees C. For the model system, N-acetyl-L-tryptophanamide in water, there is essentially no pressure dependence of the quenching rate constant, kappa q. For the internal Trp residue of ribonuclease T1 and cod parvalbumin, there also is essentially no pressure dependence of the apparent kappa q at low pressure. Thus, the activation volume, delta V not equal to, for these quenching processes is approximately zero. Such small delta V not equal to values are expected for diffusion-limited reactions in water at this temperature. The low, apparent delta V not equal to values for the globular proteins characterize these quenching processes as involving very small amplitude fluctuations in the protein structures. Only for the poised tetramer in equilibrium monomer equilibrium of melittin were we able to observe a significant effect of pressure on kappa q and this is due to the pressure-induced shift in the equilibrium position.  相似文献   

9.
Trimethylamine N-oxide (TMAO) is a natural osmolyte accumulated in cells of organisms as they adapt to environmental stresses. In vitro, TMAO increases protein stability and forces partially unfolded structures to refold. Its effects on the native fold are unknown. To investigate the interrelationship between protein stability, internal dynamics and function, the influence of TMAO on the flexibility of the native fold was examined with four different proteins by Trp phosphorescence spectroscopy. Its influence on conformational dynamics was assessed by both the intrinsic phosphorescence lifetime, which reports on the local structure about the triplet probe, and the acrylamide bimolecular quenching rate constant that is a measure of the average acrylamide diffusion coefficient through the macromolecule. The results demonstrate that for apoazurin, alcohol dehydrogenase, alkaline phosphatase and glyceraldehydes-3-phosphate dehydrogenase 1.8 M TMAO does not perturb the flexibility of these macromolecules in a temperature range between - 10 degreesC and up to near the melting temperature. This unexpected finding contrasts with the dampening effect observed with polyols as well as with the expectations based on the preferential exclusion of the osmolyte from the protein surface.  相似文献   

10.
The binding to yeast alcohol dehydrogenase of NAD+ and its five derivatives (N6-[2-[N-[2-[N-(2-methacrylamidoethyl)carbamoyl]ethyl] carbamoyl]ethyl]-NAD (I), N6-[N-[2-[N-(2-methacrylamidoethyl) carbamoyl]ethyl]carbamoylmethyl]-NAD (II), copolymer of I with acrylamide (PA-I), copolymer of II with acrylamide (PA-II), and copolymer of I with N,N-dimethylacrylamide (PDMA-I] were studied statically and kinetically by the stopped-flow method by using the quenching of the enzyme fluorescence in the presence of pyrazole. Apparent dissociation constants and apparent rate constants were determined therefrom. It was concluded that (1) the N6-CH2CH2CO group (of I) is effective in making the derivative bind more strongly as well as faster than NAD+, while the N6-CH2CO group (of II) is not; and (2) the binding of the polymer derivatives of NAD+ to the enzyme is not essentially weaker and slower than that of native NAD+, but is even faster in some cases. The coenzymic activities of the above compounds were also determined with yeast alcohol dehydrogenase, pig heart malate dehydrogenase, and rabbit muscle lactate dehydrogenase.  相似文献   

11.
The molecular structures of recombinant L-phenylalanine dehydrogenase from Rhodococcus sp. M4 in two different inhibitory ternary complexes have been determined by X-ray crystallographic analyses to high resolution. Both structures show that L-phenylalanine dehydrogenase is a homodimeric enzyme with each monomer composed of distinct globular N- and C-terminal domains separated by a deep cleft containing the active site. The N-terminal domain binds the amino acid substrate and contributes to the interactions at the subunit:subunit interface. The C-terminal domain contains a typical Rossmann fold and orients the dinucleotide. The dimer has overall dimensions of approximately 82 A x 75 A x 75 A, with roughly 50 A separating the two active sites. The structures described here, namely the enzyme.NAD+.phenylpyruvate, and enzyme. NAD+.beta-phenylpropionate species, represent the first models for any amino acid dehydrogenase in a ternary complex. By analysis of the active-site interactions in these models, along with the currently available kinetic data, a detailed chemical mechanism has been proposed. This mechanism differs from those proposed to date in that it accounts for the inability of the amino acid dehydrogenases, in general, to function as hydroxy acid dehydrogenases.  相似文献   

12.
Enhanced resolution of rapid and complex anisotropy decays was obtained by measurement and analysis of data from progressively quenched samples. Collisional quenching by acrylamide was used to vary the mean decay time of indole or of the tryptophan fluorescence from melittin. Anisotropy decays were obtained from the frequency-response of the polarized emission at frequencies from 4 to 2,000 MHz. Quenching increases the fraction of the total emission, which occurs on the subnanosecond timescale, and thereby provides increased information on picosecond rotational motions or local motions in proteins. For monoexponential subnanosecond anisotropy decays, enhanced resolution is obtained by measurement of the most highly quenched samples. For complex anisotropy decays, such as those due to both local motions and overall protein rotational diffusion, superior resolution is obtained by simultaneous analysis of data from quenched and unquenched samples. We demonstrate that measurement of quenched samples greatly reduces the uncertainty of the 50-ps correlation time of indole in water at 20 degrees C, and allows resolution of the anisotropic rotation of indole with correlation times of 140 and 720 ps. The method was applied to melittin in the monomeric and tetrameric forms. With increased quenching, the anisotropy data showed decreasing contributions from overall protein rotation and increased contribution from picosecond tryptophan motions. The tryptophan residues in both the monomeric and the tetrameric forms of melittin displayed substantial local motions with correlation times near 0.16 and 0.06 ns, respectively. The amplitude of the local motion is twofold less in the tetramer. These highly resolved anisotropy decays should be valuable for comparison with molecular dynamics simulations of melittin.  相似文献   

13.
After a brief overview of NMR and X-ray crystallography studies on protein flexibility under pressure, we summarize the effects of hydrostatic pressure on the native fold of azurin from Pseudomonas aeruginosa as inferred from the variation of the intrinsic phosphorescence lifetime and the acrylamide bimolecular quenching rate constants of the buried Trp residue. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of the hydration of the polypeptide. The study of the effect of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (ΔV(0)) of azurin and on the internal dynamics of the protein fold under pressure demonstrate that the creation of an internal cavity will enhance the plasticity and lower the stability of the globular structure. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   

14.
From acrylamide quenching results, analyzed by an itterative non-linear least-squares method, we have shown that the fluorescence of multitryptophan-containing proteins, such as horse-liver alcohol dehydrogenase, 3-phosphoglycerate kinase and lysozyme, can be resolved for different segmental contributions, each characterized by collisional (Ki) and static (Vi) quenching constants. The ability to resolve the heterogeneous fluorescence of proteins makes it possible to follow changes in dynamics of the individual residues. In yeast 3-phosphoglycerate kinase, which contains only two tryptophan residues, three fluorescent fractions, characterized by different accessibility to the quencher, were observed. Two of them are assigned to one of the tryptophan residue. This may be interpreted in terms of conformational fluctuations, which facilitate the access of acrylamide molecules to the buried tryptophan residues.  相似文献   

15.
After a brief introduction of the potentialities of Trp phosphorescence spectroscopy for probing the conformation and flexibility of protein structure, this presentation summarizes the effects of hydrostatic pressure (up to 3 kbar) on the native fold of monomeric and oligomeric proteins as inferred from the variation of the intrinsic phosphorescence lifetime and the oxygen and acrylamide bimolecular quenching rate constants of buried Trp residues. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of hydration of the polypeptide. The implications of these findings for the thermodynamic stability of proteins and for the determination of subunit dissociation equilibria under high pressure conditions are also discussed.  相似文献   

16.
Sucrose is a natural osmolyte accumulated in cells of organisms as they adapt to environmental stresses. In vitro, sucrose increases protein stability and forces partially unfolded structures to refold. Its effects on the native fold structure and dynamics are not fully established. This study, utilizing Trp phosphorescence spectroscopy, examined the influence of molar concentrations of sucrose on the flexibility of metal-free azurin from Pseudomonas aeruginosa. In addition, by means of specific mutants of the test protein, namely I7S, F110S, and C3A/C26A, that altered its thermodynamic stability, its intrinsic flexibility, and the extent of internal hydration, this investigation sought to identify possible correlations between these features of protein structure and the influence of the osmolyte on protein dynamics. Alterations of structural fluctuations were assessed by both the intrinsic phosphorescence lifetime (tau), which reports on local structure about the triplet probe, and the acrylamide bimolecular quenching rate constant (k(q)) that is a measure of the average acrylamide diffusion coefficient through the macromolecule. From the modulation of tau and k(q) across a wide temperature range and up to a concentration of 2M sucrose, it is concluded that sucrose attenuates structural fluctuations principally when macromolecules are internally hydrated and thermally expanded. Preliminary tests with trehalose and xylitol suggest that the effects of sucrose are general of the polyol class of osmolytes.  相似文献   

17.
(13)C spin-lattice relaxation times (T(1)) and nuclear Overhauser enhancements (NOE) were measured as a function of temperature and magnetic field strength for the hetero-polysaccharide hyaluronan in water solutions. The relaxation data of the endocyclic ring carbons were successfully interpreted in terms of chain segmental motions by using the bimodal time-correlation function of Dejean de la Batie, Laupretre and Monnerie. On the basis of the calculated correlation times for segmental motion and amplitudes of librational motions of the C-H vectors at the various carbon sites of the HA repeating unit, we concluded that intramolecular hydrogen bonding of the secondary structure of HA plays a major role in the conformational flexibility of this carbohydrate molecule. The internal rotation of the free hydroxymethyl groups about the exocyclic C-5-C-6 bonds superimposed on segmental motion has been described as a diffusion process of restricted amplitude. The rate and amplitude of the internal rotation indicate that the hydroxymethyl groups are not involved in intramolecular hydrogen bonding. Finally, the motional parameters describing the local dynamics of the HA chain were correlated with the secondary structure of HA in aqueous solutions.  相似文献   

18.
Proteins possessing the same fold may undergo similar motions, particularly if these motions involve large conformational transitions. The increasing amounts of structural data provide a useful starting point with which to test this hypothesis. We have performed a total of 0.29 micros of molecular dynamics across a series of proteins within the same fold family (periplasmic binding proteinlike) in order to address to what extent similarity of motion exists. Analysis of the local conformational space on these timescales (10-20 ns) revealed that the behavior of the proteins could be readily distinguished between an apo-state and a ligand-bound state. Moreover, analysis of the root-mean-square fluctuations reveals that the presence of the ligand exerts a stabilizing effect on the protein, with similar motions occurring, but with reduced magnitude. Furthermore, the conformational space in the presence of the ligand appears to be dictated by sequence but not by the type of ligand present. In contrast, apo-simulations showed considerable overlap of conformational space across the fold as a result of their ability to undergo larger fluctuations. Indeed, we observed several transitions from different simulations between states corresponding to the closed-cleft and open-cleft forms of the fold, with the predominant motions being conserved across the different proteins. Thus, large-scale conformational changes do indeed appear to be conserved across this fold architecture, but smaller conformational motions appear to reflect the differences in sequence and local fold.  相似文献   

19.
A E García  G Hummer 《Proteins》1999,36(2):175-191
We study the dynamical fluctuations of horse heart cytochrome c by molecular dynamics (MD) simulations in aqueous solution, at four temperatures: 300 K, 360 K, 430 K, and 550 K. Each simulation covers a production time of at least 1.5 nanoseconds (ns). The conformational dynamics of the system is analyzed in terms of collective motions that involve the whole protein, and local motions that involve the formation and breaking of intramolecular hydrogen bonds. The character of the MD trajectories can be described within the framework of rugged energy landscape dynamics. The MD trajectories sample multiple conformational minima, with basins in protein conformational space being sampled for a few hundred picoseconds. The trajectories of the system in configurational space can be described in terms of diffusion of a particle in real space with a waiting time distribution due to partial trapping in shallow minima. As a consequence of the hierarchical nature of the dynamics, the mean square displacement autocorrelation function, <|x(t) - x(0)|2>, exhibits a power law dependence on time, with an exponent of around 0.5 for times shorter than 100 ps, and an exponent of 1.75 for longer times. This power law behavior indicates that the system exhibits suppressed diffusion (sub-diffusion) in sampling of configurational space at time scales shorter than 100 ps, and enhanced (super-diffusion) at longer time scales. The multi-basin feature of the trajectories is present at all temperatures simulated. Structural changes associated with inter-basin displacements correspond to collective motions of the Omega loops and coiled regions and relative motions of the alpha-helices as rigid bodies. Similar motions may be involved in experimentally observed amide hydrogen exchange. However, some groups showing large correlated motions do not expose the amino hydrogens to the solvent. We show that large fluctuations are not necessarily correlated to hydrogen exchange. For example, regions of the proteins forming alpha helices and turns show significant fluctuations, but as rigid bodies, and the hydrogen bonds involved in the formation of these structures do not break in proportion to these fluctuations. Proteins 1999;36:175-191. Published 1999 Wiley-Liss, Inc.  相似文献   

20.
The fluorescence properties of ribonuclease labelled at its active site with N-(iodoacetylamino)-ethyl-5-naphthylamine-1-sulfonic acid have been studied at different temperatures and in the presence of acrylamide. The rate constant for the quenching of the fluorescence of labelled ribonuclease by acrylamide is apparently not limited by the accessibility of the probe: similar values are obtained for the native and denatured states of the protein. Instead, acrylamide seems to be a rather inefficient quencher of this fluorescent group ((acetamidoamino) ethyl-5-naphtylamine-1-sulfonic acid), as shown by non-linear Stern-Volmer representations, biphasic decay kinetics, and a low value of the rate constant.The fluorescence intensity of the native state of the labelled protein is highly sensitive to temperature and exhibits a 20% decrease for an increase of temperature of from 10°C to 30°C, independent of solvent viscosity. This thermal quenching is specific for the native conformation and disappears when the protein is unfolded. When the fluorescence life-time of the label is shortened by addition of acrylamide, the effect of temperature becomes identical for native and unfolded structures. This suggests that the cause of the thermal quenching is the presence of conformational fluctuations within the native protein which apparently take place in the time range from 35 to 200 ns.Abbreviations used 1,5-IAEDANS N-(iodoacetylamino)ethyl-5-naphthylamine-1-sulfonic acid - AEDANS (acetamidoamine)-ethyl-5-naphthylamine-1-sulfonic acid - RNase bovine pancreatic ribonuclease - AEDANS-RNase RNase labelled with AEDANS - ME-AEDANS (hydroxyethylthioacetamido)ethyl-5-naphthylamine-1-sulfonic acid: the product of the reaction between 1,5-IAEDANS and -mercaptoethanol (Hudson and Weber 1973) - Gu-HCl guanidine hydrochloride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号