首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shear flow induces amyloid fibril formation   总被引:1,自引:0,他引:1  
Shear flow is indirectly implicated in amyloid formation in vitro. Despite the association between amyloid fibrils and disease, and the prevalence of flow in physiological systems, the effect of this parameter is uncharacterized. We designed a novel Couette cell to quantitatively investigate shear exposure during fibrillogenesis. Amyloid formation by beta-lactoglobulin was monitored in situ with real-time fluorescence measurements across a range of shear rates. We demonstrate shear-induced aggregation of spheroidal seed-like species. These seeds enhance fibril formation in native beta-lactoglobulin, thereby demonstrating that shear flow generates an amyloidogenic precursor. Furthermore, preformed fibrils are degraded by exposure to high shear rates. Our results have implications for the mechanism of amyloid formation in physiological flow conditions.  相似文献   

2.
The misfolding and self-assembly of proteins into amyloid fibrils that occurs in several debilitating and age-related diseases is affected by common components of amyloid deposits, notably lipids and lipid complexes. We have examined the effect of the short-chain phospholipids, dihexanoylphosphatidylcholine (DHPC) and dihexanoylphosphatidylserine (DHPS), on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Micellar DHPC and DHPS strongly inhibited apoC-II fibril formation, whereas submicellar levels of these lipids accelerated apoC-II fibril formation to a similar degree. These results indicate that the net negative charge on DHPS, compared with the neutrally charged DHPC, is not critical for either the inhibition or activation process. We also investigated the mechanism for the submicellar, lipid-induced activation of fibril formation. Emission data for fluorescently labeled apoC-II indicated that DHPC and DHPS stimulate the early formation and accumulation of oligomeric species. Sedimentation velocity and equilibrium experiments using a new fluorescence detection system identified a discrete lipid-induced tetramer formed at low apoC-II concentrations in the absence of significant fibril formation. Seeding experiments showed that this tetramer was on the fibril-forming pathway. Fluorescence resonance energy transfer experiments established that this tetramer forms rapidly and is stabilized by submicellar, but not micellar, concentrations of DHPC and DHPS. Several recent studies show that oligomeric intermediates in amyloid fibril formation are toxic. Our results indicate that lipids promote on-pathway intermediates of apoC-II fibril assembly and that the accumulation of a discrete tetrameric intermediate depends on the molecular state of the lipid.  相似文献   

3.
Apolipoprotein amyloid deposits and lipid oxidation products are colocalized in human atherosclerotic tissue. In this study we show that the primary ozonolysis product of cholesterol, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (KA), rapidly promotes human apolipoprotein (apo) C-II amyloid fibril formation in vitro. Previous studies show that hydrophobic aldehydes, including KA, modify proteins by the formation of a Schiff base with the lysine epsilon-amino group or N-terminal amino group. High-performance liquid chromatography, mass spectrometry, and proteolysis of KA-modified apoC-II revealed that KA randomly modified six different lysine residues, with primarily one KA attached per apoC-II molecule. Competition experiments showed that an aldehyde scavenging compound partially inhibited the ability of KA to hasten apoC-II fibril formation. Conversely, the acid derivative of KA, lacking the ability to form a Schiff base, accelerated apoC-II fibril formation, albeit to a lesser extent, suggesting that amyloidogenesis triggered by KA involves both covalent and noncovalent mechanisms. The viability of a noncovalent mechanism mediated by KA has been observed previously with alpha-synuclein aggregation, implicated in Parkinson's disease. Electron microscopy demonstrated that fibrils formed in the presence of KA had a similar morphology to native fibrils; however, the isolated KA-apoC-II covalent adducts in the absence of unmodified apoC-II formed fibrillar structures with altered ropelike morphologies. KA-mediated fibril formation by apoC-II was inhibited by the addition of the amine-containing compound hydralazine and the lipid-binding protein apoA-I. These in vitro studies suggest that the oxidized small molecule pool could trigger or hasten the aggregation of apoC-II to form amyloid deposits.  相似文献   

4.
Human apolipoprotein (apo) C-II is one of several lipid-binding proteins that self-assemble into fibrils and accumulate in disease-related amyloid deposits. A general characteristic of these amyloid deposits is the presence of lipids, known to modulate individual steps in amyloid fibril formation. ApoC-II fibril formation is activated by submicellar phospholipids but inhibited by micellar lipids. We examined the mechanism for the activation by submicellar lipids using the fluorescently labeled, short-chain phospholipid 1-dodecyl-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-2-hydroxyglycero-3-phosphocholine (NBD-lyso-12-PC). Addition of submicellar NBD-lyso-12-PC increased the rate of fibril formation by apoC-II approximately 2-fold. Stopped flow kinetic analysis using fluorescence detection and low, non-fibril-forming concentrations of apoC-II indicated NBD-lyso-12-PC binds rapidly, on the millisecond time scale, followed by the slower formation of discrete apoC-II tetramers. Sedimentation velocity analysis showed NBD-lyso-12-PC binds to both apoC-II monomers and tetramers at approximately five sites per monomer with an average dissociation constant of approximately 10 μM. Mature apoC-II fibrils formed in the presence of NBD-lyso-12-PC were devoid of lipid, indicating a purely catalytic role for submicellar lipids in the activation of apoC-II fibril formation. These studies demonstrate the catalytic potential of small amphiphilic molecules in controlling protein folding and fibril assembly pathways.  相似文献   

5.
Lipid-free human apolipoprotein C-II (apoC-II) forms amyloid fibrils with characteristic beta-structure. This conformation is distinct from the alpha-helical fold of lipid-bound apoC-II. We have investigated the effect of the short-chain phospholipid, dihexanoylphosphatidylcholine (DHPC) on amyloid formation by apoC-II. The alpha-helical content of apoC-II increases in the presence of micellar DHPC (16 mM) and amyloid formation is inhibited. However, at sub-micellar DHPC concentrations (below 8 mM) amyloid formation is accelerated 6 fold. These results suggest that individual phospholipid molecules in vivo may exert significant effects on amyloid folding pathways.  相似文献   

6.
Human apolipoprotein C-II (apoC-II) slowly forms amyloid fibers in lipid-free solutions at physiological pH and salt concentrations (Hatters, D. M., MacPhee, C. E., Lawrence, L. J., Sawyer, W. H., and Howlett, G. J. (2000) Biochemistry 39, 8276--8283). Measurements of the time dependence of solution turbidity, thioflavin T reactivity, and the amount of sedimentable aggregate reveal that the rate and extent of amyloid formation are significantly increased by the addition of an inert polymer, dextran T10, at concentrations exceeding 20 g/liter. High dextran concentrations do not alter the secondary structure of the protein, fiber morphology, or the thioflavin T and Congo Red binding capacity of apoC-II amyloid. Analytical ultracentrifugation studies show that monomeric apoC-II does not associate significantly with dextran. The observed dependence of the overall rate of amyloid formation on dextran concentration may be accounted for quantitatively by a simple model for nonspecific volume exclusion. The model predicts that an increase in the fractional volume occupancy of macromolecules in a physiological fluid can nonspecifically accelerate the formation of amyloid fibers by any amyloidogenic protein.  相似文献   

7.
For several different proteins an apparent correlation has been observed between the propensity for dimerization by domain-swapping and the ability to aggregate into amyloid-like fibrils. Examples include the disease-related proteins β2-microglobulin and transthyretin. This has led to proposals that the amyloid-formation pathway may feature extensive domain swapping. One possible consequence of such an aggregation pathway is that the resulting fibrils would incorporate structural elements that resemble the domain-swapped forms of the protein and, thus, reflect certain native-like structures or domain-interactions. In magic angle spinning solid-state NMR-based and other structural studies of such amyloid fibrils, it appears that many of these proteins form fibrils that are not native-like. Several fibrils, instead, have an in-register, parallel conformation, which is a common amyloid structural motif and is seen, for instance, in various prion fibrils. Such a lack of native structure in the fibrils suggests that the apparent connection between domain-swapping ability and amyloid-formation may be more subtle or complex than may be presumed at first glance.  相似文献   

8.
《朊病毒》2013,7(3):211-216
For several different proteins an apparent correlation has been observed between the propensity for dimerization by domain-swapping and the ability to aggregate into amyloid-like fibrils. Examples include the disease-related proteins β2-microglobulin and transthyretin. This has led to proposals that the amyloid-formation pathway may feature extensive domain swapping. One possible consequence of such an aggregation pathway is that the resulting fibrils would incorporate structural elements that resemble the domain-swapped forms of the protein and, thus, reflect certain native-like structures or domain-interactions. In magic angle spinning solid-state NMR-based and other structural studies of such amyloid fibrils, it appears that many of these proteins form fibrils that are not native-like. Several fibrils, instead, have an in-register, parallel conformation, which is a common amyloid structural motif and is seen, for instance, in various prion fibrils. Such a lack of native structure in the fibrils suggests that the apparent connection between domain-swapping ability and amyloid-formation may be more subtle or complex than may be presumed at first glance.  相似文献   

9.
The misfolding and self-assembly of proteins into amyloid fibrils, which occur in several debilitating and age-related diseases, are affected by common components of amyloid deposits, notably lipids and lipid complexes. Previously, the effects of phospholipids on amyloid fibril formation by apolipoprotein (apo) C-II have been examined, where low concentrations of micellar phospholipids and lipid bilayers induce a new, straight rod-like morphology for apoC-II fibrils. This fibril appearance is distinct from the twisted-ribbon morphology observed when apoC-II fibrils are formed in the absence of lipids. We used total internal reflection fluorescence microscopy (TIRFM) to visualize the described polymorphism of apoC-II amyloid fibrils. The spontaneous assembly of apoC-II into either twisted-ribbon fibrils in the absence of lipids or into fibrils of straight rod-like morphology when lipids are present was captured by TIRFM. The latter was found to be better suited for visualization using TIRFM. The difference between seeding of apoC-II straight fibrils on microscopic quartz slide and in test tube suggested a role for the effects of incubation surface on fibril formation. Seed-dependent growth of apoC-II straight fibrils was probed further by using a dual-labelling construct, giving insights into the straight fibril growth pattern.  相似文献   

10.
Under lipid-free conditions, human apolipoprotein C-II (apoC-II) exists in an unfolded conformation that over several days forms amyloid ribbons. We examined the influence of the molecular chaperone, alpha-crystallin, on amyloid formation by apoC-II. Time-dependent changes in apoC-II turbidity (at 0.3 mg/ml) were suppressed potently by substoichiometric subunit concentrations of alpha-crystallin (1-10 microg/ml). alpha-Crystallin also inhibits time-dependent changes in the CD spectra, thioflavin T binding, and sedimentation coefficient of apoC-II. This contrasts with stoichiometric concentrations of alpha-crystallin required to suppress the amorphous aggregation of stressed proteins such as reduced alpha-lactalbumin. Two pieces of evidence suggest that alpha-crystallin directly interacts with amyloidogenic intermediates. First, sedimentation equilibrium and velocity experiments exclude high affinity interactions between alpha-crystallin and unstructured monomeric apoC-II. Second, the addition of alpha-crystallin does not lead to the accumulation of intermediate sized apoC-II species between monomer and large aggregates as indicated by gel filtration and sedimentation velocity experiments, suggesting that alpha-crystallin does not inhibit the relatively rapid fibril elongation upon nucleation. We propose that alpha-crystallin interacts stoichiometrically with partly structured amyloidogenic precursors, inhibiting amyloid formation at nucleation rather than the elongation phase. In doing so, alpha-crystallin forms transient complexes with apoC-II, in contrast to its chaperone behavior with stressed proteins.  相似文献   

11.
Pham CL  Hatters DM  Lawrence LJ  Howlett GJ 《Biochemistry》2002,41(48):14313-14322
We have investigated the effect of disulfide cross-linking on amyloid formation by human apolipoprotein (apo) C-II. Three derivatives of apoC-II were generated by inserting a cysteine residue on either the N-terminus (C(N)-apoC-II), C-terminus (C(C)-apoC-II), or both termini (C(N)C(C)-apoC-II). Under reducing conditions, all derivatives formed amyloid with a fibrous ribbon morphology similar to that of wild-type apoC-II. Under oxidizing conditions, C(N)- and C(N)C(C)-apoC-II formed a highly tangled network of fibrils, suggesting that the addition of an N-terminal cysteine to apoC-II promotes interfibril disulfide cross-links. Fibrils formed by C(C)-apoC-II under oxidizing conditions were closely packed but less tangled than fibrils formed by the C(N) and C(N)C(C) derivatives. The frequency of closed ring structures was more than doubled for C(C)-apoC-II compared to wild-type apoC-II. The kinetics of fibril formation by all cysteine derivatives was markedly enhanced under oxidizing conditions, suggesting that disulfide cross-linking promotes amyloid formation. Substoichiometric levels of preformed C(N)- and C(C)-apoC-II dimers accelerate amyloid formation by wild-type apoC-II. These data suggest that the N- and C-termini of apoC-II are close together in the amyloid fibril such that covalent cross-linking of either the N or C end of apoC-II promotes nucleation and the "seeding" of fibril growth.  相似文献   

12.
Light chain (or AL) amyloidosis is characterized by the pathological deposition of insoluble fibrils of immunoglobulin light chain fragments in various tissues, walls of blood vessels, and basement membranes. In the present investigation, the in vitro assembly of a recombinant amyloidogenic light chain variable domain, SMA, on various surfaces was monitored using atomic force microscopy. SMA formed fibrils on native mica at pH 5.0, conditions under which predominantly amorphous aggregates form in solution. Fibril formation was accelerated significantly on surfaces compared with solution; for example, fibrils grew on surfaces at significantly faster rates and at much lower concentrations than in solution. No fibrils were observed on hydrophobic or positively charged surfaces or at pH >7.0. Two novel types of fibril growth were observed on the surface: bidirectional linear assembly of oligomeric units, and linear growth from preformed amorphous cores. In addition to catalyzing the rate of fibrillation, the mechanism of fibril formation on the surfaces was significantly different from in solution, but it may be more physiologically relevant because in vivo the deposits are associated with surfaces.  相似文献   

13.
The effect of the extracellular chaperone, clusterin, on amyloid fibril formation by lipid-free human apolipoprotein C-II (apoC-II) was investigated. Sub-stoichiometric levels of clusterin, derived from either plasma or semen, potently inhibit amyloid formation by apoC-II. Inhibition is dependent on apoC-II concentration, with more effective inhibition by clusterin observed at lower concentrations of apoC-II. The average sedimentation coefficient of apoC-II fibrils formed from apoC-II (0.3 mg.mL-1) is reduced by coincubation with clusterin (10 microg x mL(-1)). In contrast, addition of clusterin (0.1 mg x mL(-1)) to preformed apoC-II amyloid fibrils (0.3 mg x mL(-1)) does not affect the size distribution after 2 days. This sedimentation velocity data suggests that clusterin inhibits fibril growth but does not promote fibril dissociation. Electron micrographs indicate similar morphologies for amyloid fibrils formed in the presence or absence of clusterin. The substoichiometric nature of the inhibition suggests that clusterin interacts with transient amyloid nuclei leading to dissociation of the monomeric subunits. We propose a general role for clusterin in suppressing the growth of extracellular amyloid.  相似文献   

14.
15.
16.
Seeding-dependent propagation and maturation of amyloid fibril conformation   总被引:1,自引:0,他引:1  
Recent studies of amyloid fibrils have focused on the presence of multiple amyloid forms even with one protein and their propagation by seeding, leading to conformational memory. To establish the structural basis of these critical features of amyloid fibrils, we used the amyloidogenic fragment Ser20-Lys41 (K3) of beta2-microglobulin, a protein responsible for dialysis-related amyloidosis. In 20% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl (pH approximately 2), K3 peptide formed two types of amyloid-like fibrils, f218 and f210, differing in the amount of beta-sheet as measured by circular dichroism spectroscopy and Fourier transform infrared spectroscopy. Atomic force microscopy showed that the fibril with a larger amount of beta-sheet (f210) is thinner and longer. Both fibrils were reproduced by seeding, showing the template-dependent propagation of a fibril's conformation. However, upon repeated self-seeding, f218 fibrils were gradually transformed into f210 fibrils, revealing the conformational maturation. The observed maturation can be explained fully by a competitive propagation of two fibrils. The maturation of amyloid fibrils might play a role during the development of amyloidosis.  相似文献   

17.
Human apolipoprotein C-II (apoC-II) self-associates in solution to form aggregates with the characteristics of amyloid including red-green birefringence in the presence of Congo Red under cross-polarized light, increased fluorescence in the presence of thioflavin T, and a fibrous structure when examined by electron microscopy. ApoC-II was expressed and purified from Escherichia coli and rapidly exchanged from 5 M guanidine hydrochloride into 100 mM sodium phosphate, pH 7.4, to a final concentration of 0.3 mg/mL. This apoC-II was initially soluble, eluting as low molecular weight species in gel filtration experiments using Sephadex G-50. Circular dichroism (CD) spectroscopy indicated predominantly unordered structure. Upon incubation for 24 h, apoC-II self-associated into high molecular weight aggregates as indicated by elution in the void volume of a Sephadex G-50 column, by rapid sedimentation in an analytical ultracentrifuge, and by increased light scattering. CD spectroscopy indicated an increase in beta-sheet content, while fluorescence emission spectroscopy of the single tryptophan revealed a blue shift and an increase in maximum intensity, suggesting repositioning of the tryptophan into a less polar environment. Electron microscopy of apoC-II aggregates revealed a novel looped-ribbon morphology (width 12 nm) and several isolated closed loops. Like all of the conserved plasma apolipoproteins, apoC-II contains amphipathic helical regions that account for the increase in alpha-helix content on lipid binding. The increase in beta-structure accompanying apoC-II fibril formation points to an alternative folding pathway and an in vitro system to explore the general tendency of apolipoproteins to form amyloid in vivo.  相似文献   

18.
Amyloid fibrils have historically been characterized by diagnostic dye-binding assays, their fibrillar morphology, and a "cross-beta" x-ray diffraction pattern. Whereas the latter demonstrates that amyloid fibrils have a common beta-sheet core structure, they display a substantial degree of morphological variation. One striking example is the remarkable ability of human apolipoprotein C-II amyloid fibrils to circularize and form closed rings. Here we explore in detail the structure of apoC-II amyloid fibrils using electron microscopy, atomic force microscopy, and x-ray diffraction studies. Our results suggest a model for apoC-II fibrils as ribbons approximately 2.1-nm thick and 13-nm wide with a helical repeat distance of 53 nm +/- 12 nm. We propose that the ribbons are highly flexible with a persistence length of 36 nm. We use these observed biophysical properties to model the apoC-II amyloid fibrils either as wormlike chains or using a random-walk approach, and confirm that the probability of ring formation is critically dependent on the fibril flexibility. More generally, the ability of apoC-II fibrils to form rings also highlights the degree to which the common cross-beta superstructure can, as a function of the protein constituent, give rise to great variation in the physical properties of amyloid fibrils.  相似文献   

19.
Disease-associated amyloid deposits contain both fibrillar and nonfibrillar components. The majority of these amyloid components originate or coexist in the bloodstream. To understand the nature of the interaction between the nonfibrillar and fibrillar components, we have developed a centrifugation method to isolate fibril binding proteins from human serum. Amyloid fibrils composed of either Abeta peptide or apolipoprotein C-II (apoC-II) cosedimented with specific serum proteins. Gel electrophoresis, mass spectrometry peptide fingerprinting, and Western analysis identified the major binding species as proteins found in HDL particles, including apoA-I, apoA-II, apoE, clusterin, and serum amyloid A. Sedimentation analysis showed that purified human HDL and recombinant apoA-I lipid particles bound directly to Abeta and apoC-II amyloid fibrils. These studies reveal a novel function of HDL that may contribute to the well-established protective effect of this lipoprotein class in heart disease.  相似文献   

20.
Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures. The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases. A number of plasma apolipoproteins, including apolipoprotein (apo) A-I, apoA-II, apoC-II and apoE are implicated in amyloid formation or influence amyloid formation by other proteins. We review present knowledge of amyloid formation by apolipoproteins in disease, with particular focus on atherosclerosis. Further insights into the molecular mechanisms underlying their amyloidogenic propensity are obtained from in vitro studies which describe factors affecting apolipoprotein amyloid fibril formation and interactions. Additionally, we outline the evidence that amyloid fibril formation by apolipoproteins might play a role in the development and progression of atherosclerosis, and highlight possible molecular mechanisms that could contribute to the pathogenesis of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号