首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Drosophila genes dally and dally-like encode glypicans, which are heparan sulphate proteoglycans anchored to the cell membrane by a glycosylphosphatidylinositol link. Genetic studies have implicated Dally and Dally-like in Wingless signalling in embryos and imaginal discs. Here, we test the signalling properties of these molecules in the embryonic epidermis. We demonstrate that RNA interference silencing of dally-like, but not dally, gives a segment polarity phenotype identical to that of null mutations in wingless or hedgehog. Using heterologous expression in embryos, we uncoupled the Hedgehog and Wingless signalling pathways and found that Dally-like and Dally, separately or together, are not necessary for Wingless signalling. Dally-like, however, is strictly necessary for Hedgehog signal transduction. Epistatic experiments show that Dally-like is required for the reception of the Hedgehog signal, upstream or at the level of the Patched receptor.  相似文献   

2.
3.
4.
Sonic hedgehog (Shh) is crucial for motoneuron development in chick and mouse. However, zebrafish embryos homozygous for a deletion of the shh locus have normal numbers of motoneurons, raising the possibility that zebrafish motoneurons may be specified differently. Unlike other vertebrates, zebrafish express three hh genes in the embryonic midline: shh, echidna hedgehog (ehh) and tiggywinkle hedgehog (twhh). Therefore, it is possible that Twhh and Ehh are sufficient for motoneuron formation in the absence of Shh. To test this hypothesis we have eliminated, or severely reduced, all three Hh signals using mutations that directly or indirectly reduce Hh signaling and antisense morpholinos. Our analysis shows that Hh signals are required for zebrafish motoneuron induction. However, each of the three zebrafish Hhs is individually dispensable for motoneuron development because the other two can compensate for its loss. Our results also suggest that Twhh and Shh are more important for motoneuron development than Ehh.  相似文献   

5.
Mouse embryonic stem cells can differentiate in vitro into cells of the nervous system, neurons and glia. This differentiation mimics stages observed in vivo, including the generation of primitive ectoderm and neurectoderm in embryoid body culture. We demonstrate here that embryonic stem cell lines mutant for components of the Hedgehog signaling cascade are deficient at generating neurectoderm-containing embryoid bodies. The embryoid bodies derived from mutant cells are also unable to respond to retinoic acid treatment by producing nestin-positive neural stem cells, a response observed in cultures of heterozygous cells, and contain cores apparently arrested at the primitive ectoderm stage. The mutant cultures are also deficient in their capacity to differentiate into mature neurons and glia. These data are consistent with a role for Hedgehog signaling in generating neurectoderm capable of producing the appropriate neuronal and glial progenitors in ES cell culture.  相似文献   

6.
Endocardial cells form the inner endothelial layer of the heart tube, surrounded by the myocardium. Signaling pathways that regulate endocardial cell specification and differentiation are largely unknown and the origin of endocardial progenitors is still being debated. To study pathways that regulate endocardial differentiation in a zebrafish model system, we isolated zebrafish NFATc1 homolog which is expressed in endocardial but not vascular endothelial cells. We further demonstrate that Hedgehog (Hh) but not VegfA or Notch signaling is required for early endocardial morphogenesis. Pharmacological inhibition of Hh signaling with cyclopamine treatment resulted in nearly complete loss of the endocardial marker expression. Simultaneous knockdown of the two zebrafish sonic hedgehog homologs, shh and twhh or Hh co-receptor smoothened (smo) resulted in similar defects in endocardial morphogenesis. Inhibition of Hh signaling resulted in the loss of fibronectin (fn1) expression in the presumptive endocardial progenitors as early as the 10-somite stage which suggests that Hh signaling is required for the earliest stages of endocardial specification. We further show that the endoderm plays a critical role in migration but not specification or differentiation of the endocardial progenitors while notochord-derived Hh is a likely source for the specification and differentiation signal. Mosaic analysis using cell transplantation shows that Smo function is required cell-autonomously within endocardial progenitor cells. Our results argue that Hh provides a critical signal to induce the specification and differentiation of endocardial progenitors.  相似文献   

7.
8.
The molecular pathways by which newly formed, immature endothelial cell tubes remodel to form a mature network of vessels supported by perivascular mural cells are not well understood. The zebrafish iguana (igu) genetic mutant has a mutation in the daz-interacting protein 1 (dzip1), a member of the hedgehog signaling pathway. Loss of dzip1 results in decreased size of the cranial dorsal aortae, ultrastructural defects in perivascular mural cell recruitment and subsequent hemorrhage. Although hedgehog signaling is disrupted in igu mutants, we find no defects in vessel patterning or artery–vein specification. Rather, we show that the loss of angiopoietin1 (angpt1) expression in ventral perivascular mesenchyme is responsible for vascular instability in igu mutants. Over-expression of angpt1 or partial down-regulation of the endogenous Angpt1 antagonist angpt2 rescues hemorrhage. This is the first direct in vivo link between hedgehog signaling and the induction of vascular stability by recruitment of perivascular mural cells through angiopoietin signaling.  相似文献   

9.
Culi J  Mann RS 《Cell》2003,112(3):343-354
The maturation of cell surface receptors through the secretory pathway often requires chaperones that aid in protein folding and trafficking from one organelle to another. Here we describe boca, an evolutionarily conserved gene in Drosophila melanogaster, which encodes an endoplasmic reticulum protein that is specifically required for the intracellular trafficking of members of the low-density lipoprotein family of receptors (LDLRs). Two LDLRs in flies, Arrow, which is required for Wingless signal transduction, and Yolkless, which is required for yolk protein uptake during oogenesis, both require boca function. Consequently, boca is an essential component of the Wingless pathway but is more generally required for the activities of multiple LDL receptor family members.  相似文献   

10.
Hedgehog ligands interact with receptor complexes containing Patched (PTC) and Smoothened (SMO) proteins to regulate many aspects of development. The mutation W535L (SmoM2) in human Smo is associated with basal cell skin cancers, causes constitutive, ligand-independent signaling through the Hedgehog pathway, and provides a powerful means to test effects of unregulated Hedgehog signaling. Expression of SmoM2 in Xenopus embryos leads to developmental anomalies that are consistent with known requirements for regulated Hedgehog signaling in the eye and pancreas. Additionally, it results in failure of midgut epithelial cytodifferentiation and of the intestine to lengthen and coil. The midgut mesenchyme shows increased cell numbers and attenuated expression of the differentiation marker smooth muscle actin. With the exception of the pancreas, differentiation of foregut and hindgut derivatives is unaffected. The intestinal epithelial abnormalities are reproduced in embryos or organ explants treated directly with active recombinant hedgehog protein. Ptc mRNA, a principal target of Hedgehog signaling, is maximally expressed at stages corresponding to the onset of the intestinal defects. In advanced embryos expressing SmoM2, Ptc expression is remarkably confined to the intestinal wall. Considered together, these findings suggest that the splanchnic mesoderm responds to endodermal Hedgehog signals by inhibiting the transition of midgut endoderm into intestinal epithelium and that attenuation of this feedback is required for normal development of the vertebrate intestine.  相似文献   

11.
12.
Hedgehog (Hh) signal transduction is directly required in zebrafish DRG precursors for proper development of DRG neurons. Zebrafish mutations in the Hh signaling pathway result in the absence of DRG neurons and the loss of expression of neurogenin1 (ngn1), a gene required for determination of DRG precursors. Cell transplantation experiments demonstrate that Hh acts directly on DRG neuron precursors. Blocking Hh pathway activation at later stages of embryogenesis with the steroidal alkaloid, cyclopamine, further reveals that the requirement for a Hh signal response in DRG precursors correlates with the onset of ngn1 expression. These results suggest that Hh signaling may normally promote DRG development by regulating expression of ngn1 in DRG precursors.  相似文献   

13.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.  相似文献   

14.
Studies with embryonic explants and embryonic stem cells have suggested a role for Hedgehog (Hh) signaling in hematopoiesis. However, targeted deletion of Hh pathway components in the mouse has so far failed to provide in vivo evidence. Here we show that zebrafish embryos mutant in the Hh pathway or treated with the Hh signaling inhibitor cyclopamine display defects in adult hematopoietic stem cell (HSC) formation but not in primitive hematopoiesis. Hh is required in the trunk at three consecutive stages during vascular development: for the medial migration of endothelial progenitors of the dorsal aorta (DA), for arterial gene expression, and for the formation of intersomitic vessel sprouts. Interference with Hh signaling during the first two stages also interferes with HSC formation. Furthermore, HSC and DA formation also share Vegf and Notch requirements, which further distinguishes them from primitive hematopoiesis and underlines their close relationship during vertebrate development.  相似文献   

15.
In the embryonic mouse retina, retinoic acid (RA) is unevenly distributed along the dorsoventral axis: RA-rich zones in dorsal and ventral retina are separated by a horizontal RA-poor stripe that contains the RA-inactivating enzyme CYP26A1. To explore the developmental role of this arrangement, we studied formation of the retina and its projections in Cyp26a1 null-mutant mice. Expression of several dorsoventral markers was not affected, indicating that CYP26A1 is not required for establishing the dorsoventral retina axis. Analysis of the mutation on a RA-reporter mouse background confirmed, as expected, that the RA-poor stripe was missing in the retina and its projections at the time when the optic axons first grow over the diencephalon. A day later, however, a gap appeared both in retina and retinofugal projections. As explanation, we found that CYP26C1, another RA-degrading enzyme, had emerged centrally in a narrower domain within the RA-poor stripe. While RA applications increased retinal Cyp26a1 expression, they slightly reduced Cyp26c1. These observations indicate that the two enzymes function independently. The safeguard of the RA-poor stripe by two distinct enzymes during later development points to a role in maturation of a significant functional feature like an area of higher visual acuity that develops at its location.  相似文献   

16.
Several lines of evidence point to the central role of WNT signaling in the initiation of intestinal tumorigenesis, most often due to loss of APC, a negative regulator of the WNT-βCATENIN/TCF pathway. Modeling human colon cancers in mice through loss of Apc has shown that inappropriate activation of Wnt signaling is sufficient to induce adenoma formation. More recent analyses have also demonstrated a key role for HEDGEHOG-GLI (HH-GLI) signaling in human colon cancers. However, how the WNT and HH pathways interact during intestinal development, homeostasis and cancer is not clear. Marker analyses suggest predominant paracrine signaling from rare Shh producing cells in the crypt’s bottom to adjacent Gli1+ mesenchymal cells in normal adult mice. Using conditional KO models, we show that inhibition of the function of the critical Hh mediator Smoothened (Smo) rescues the lethality and intestinal phenotypes of loss of Apc. The results uncover an essential role of the Hh pathway in tumors induced by hyperactive Wnt signaling, suggest the action of the Hh pathway in parallel or downstream of Wnt signaling, and validate this model for its use in preclinical work testing Hh pathway antagonists.  相似文献   

17.
The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.  相似文献   

18.
The glypican family of heparan sulfate proteoglycans has been implicated in formation of morphogen gradients. Here, we examine the role of the glypican Dally-like protein (Dlp) in shaping the Wingless gradient in the Drosophila wing disc. Surprisingly, we find that Dlp has opposite effects at high and low levels of Wingless. Dlp promotes low-level Wingless activity but reduces high-level Wingless activity. We present evidence that the Wg antagonist Notum acts to induce cleavage of the Dlp glypican at the level of its GPI anchor, which leads to shedding of Dlp. Thus, spatially regulated modification of Dlp by Notum employs the ligand binding activity of Dlp to promote or inhibit signaling in a context-dependent manner. Notum-induced shedding of Dlp could convert Dlp from a membrane-tethered coreceptor to a secreted antagonist.  相似文献   

19.
Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.  相似文献   

20.
Zi Z  Klipp E 《FEBS letters》2007,581(24):4589-4595
Previous work has shown that receptor trafficking is a potential site for the control of signaling pathways. In most biological experiments, the ligand concentration and cell density vary within a wide range among different systems. However, there is less attention to systematically analyze how much cellular signal response is affected by cell densities. Here, we use a quantitative mathematical model to investigate signal responses in different receptor trafficking networks by simultaneous variations of ligand concentration and cell density. Computational analysis of the model revealed that receptor trafficking networks have potential sigmoid responses to ratio between ligand and surface receptor number per cell, which is a key factor to control the signaling responses in receptor trafficking networks. Furthermore, cell density also affects the robustness of dose-response curve upon the variation of binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号