首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable carbon isotope analysis in tooth enamel is a well-established approach to infer C3 and C4 dietary composition in fossil mammals. The bulk of past work has been conducted on large herbivorous mammals. One important finding is that their dietary habits of fossil large mammals track the late Miocene ecological shift from C3 forest and woodland to C4 savannah. However, few studies on carbon isotopes of fossil small mammals exist due to limitations imposed by the size of rodent teeth, and the isotopic ecological and dietary behaviors of small mammals to climate change remain unknown. Here we evaluate the impact of ecological change on small mammals by fine-scale comparisons of carbon isotope ratios (δ13C) with dental morphology of murine rodents, spanning 13.8 to ∼2.0 Ma, across the C3 to C4 vegetation shift in the Miocene Siwalik sequence of Pakistan. We applied in-situ laser ablation GC-IRMS to lower first molars and measured two grazing indices on upper first molars. Murine rodents yield a distinct, but related, record of past ecological conditions from large herbivorous mammals, reflecting available foods in their much smaller home ranges. In general, larger murine species show more positive δ13C values and have higher grazing indices than smaller species inhabiting the same area at any given age. Two clades of murine rodents experienced different rates of morphological change. In the faster-evolving clade, the timing and trend of morphological innovations are closely tied to consumption of C4 diet during the vegetation shift. This study provides quantitative evidence of linkages among diet, niche partitioning, and dental morphology at a more detailed level than previously possible.  相似文献   

2.
Tooth enamel of nine Middle Miocene mammalian herbivores from Fort Ternan, Kenya, was analyzed for δ13C and δ18O. The δ18O values of the tooth enamel compared with pedogenic and diagenetic carbonate confirm the use of stable isotope analysis of fossil tooth enamel as a paleoenvironmental indicator. Furthermore, the δ18O of tooth enamel indicates differences in water sources between some of the mammals. The δ13C values of tooth enamel ranged from −8·6–−13·0‰ which is compatible with a pure C3diet, though the possibility of a small C4fraction in the diet of a few of the specimens sampled is not precluded. The carbon isotopic data do not support environmental reconstructions of a Serengeti-typed wooded grassland with a significant proportion of C4grasses. This study does not preclude the presence of C3grasses at Fort Ternan; it is possible that C3grasses could have had a wider geographic range if atmospheric CO2levels were higher than the present values.  相似文献   

3.
The relative composition of stable carbon isotopes, δ13C, was determined in flag leaves and grain of spring wheat (Triticum aestivum L. cv Albis) grown in open-top field fumigation chambers and exposed to different O3 levels during the growing season. The aim of the study was to establish exposure-response relationships for the radiation-weighted seasonal mean O3 concentration and δ13C (relative deviation of the 13C/12C ratio) values of the two plant parts. Samples were collected at harvest in 1986, 1987, and 1988. With increasing O3 concentration, δ13C values increased (became less negative) proportionally. Year to year δ13C differences at equivalent O3 concentrations were small. The shift in δ13C caused by O3 was more pronounced in grain than in leaves. According to models of 13C discrimination in C3 plants, these results indicate increasing limitation of photosynthesis by CO2 diffusion relative to limitation by carboxylation with increasing O3 exposure. This conclusion is not in agreement with results from gas exchange analysis. Water use efficiency in green flag leaves tended to decrease with increasing O3, indicating a dominating effect of O3 on CO2 carboxylation.  相似文献   

4.
Variations in the carbon isotope signature of leaf dark-respired CO213CR) within a single night is a widely observed phenomenon. However, it is unclear whether there are plant functional type differences with regard to the amplitude of the nighttime variation in δ13CR. These differences, if present, would be important for interpreting the short-term variations in the stable carbon signature of ecosystem respiration and the partitioning of carbon fluxes. To assess the plant functional type differences relating to the magnitude of the nighttime variation in δ13CR and the respiratory apparent fractionation, we measured the δ13CR, the leaf gas exchange, and the δ13C of the respiratory substrates of 22 species present in the agricultural-pastoral zone of the Songnen Plain, northeast China. The species studied were grouped into C3 and C4 plants, trees, grasses, and herbs. A significant nocturnal shift in δ13CR was detected in 20 of the studied species, with the magnitude of the shift ranging from 1‰ to 5.8‰. The magnitude of the nighttime variation in δ13CR was strongly correlated with the daytime cumulative carbon assimilation, which suggests that variation in δ13CR were influenced, to some extent, by changes in the contribution of malate decarboxylation to total respiratory CO2 flux. There were no differences in the magnitude of the nighttime variation in δ13CR between the C3 and C4 plants, as well as among the woody plants, herbs and graminoids. Leaf respired CO2 was enriched in 13C compared to biomass, soluble carbohydrates and lipids; however the magnitude of enrichment differed between 8 pm and 4 am, which were mainly caused by the changes in δ13CR. We also detected the plant functional type differences in respiratory apparent fractionation relative to biomass at 4 am, which suggests that caution should be exercised when using the δ13C of bulk leaf material as a proxy for the δ13C of leaf-respired CO2.  相似文献   

5.
We have measured stable isotopic compositions of Miocene pelagic fine-fraction (<63 μm) carbonates from oligotrophic deep-sea sites in the Pacific and Atlantic oceans and compared them with those of coexisting foraminifers to test their utility as near sea-surface indicators. Fine-fraction carbonates (primarily polyspecific nannofossils) and surface-dwelling planktic foraminiferal (Globigerinoides) stable isotopes both have been considered to reflect surface-water hydrographic conditions. However, our results indicate that fine-fraction stable isotopes are offset from and do not correlate well with those of Globigerinoides. In contrast, stable isotopic records of the deep-dwelling planktic foraminifer Globoquadrina are in good correspondence with the fine-fraction records in terms of long-term (ca. >1 m.y.) trends and temporal variability. On the basis of a time-series hydrography and flux study site in the oligotrophic subtropical North Atlantic, we interpret the isotopic discrepancies between fine-fraction and Globigerinoides as resulting primarily from season of calcification, as well as possible vital effects. We suggest that fine-fraction stable isotope values from oligotrophic waters reflect late winter–early spring relatively cool, nutrient-rich shallow mixed-layer conditions during the time of deep mixing (i.e., spring bloom), whereas Globigerinoides stable isotope values record conditions that prevailed in the stratified surface waters in the warmer late spring–fall. This implies that paired analyses of fine-fraction and surface-dwelling planktic foraminiferal δ18O could be applied to reconstruct paleoseasonality of the open oceans. However, because the fine-fraction δ13C values are not representative of the annual mean surface-water δ13C, we recommend use of near surface-dwelling planktic foraminiferal δ13C as a proxy for δ13C of stratified surface waters that are more or less in equilibrium with the atmosphere with respect to pCO2.  相似文献   

6.
Statistical analysis reveals that the set of differences between the secondary shifts of the α- and β-carbons for residues i of a protein (Δδ13Cαi- Δδ13Cβi) provides the means to detect and correct referencing errors for 1H and 13C nuclei within a given dataset. In a correctly referenced protein dataset, linear regression plots of Δδ13Cαi,Δδ13Cβi, or Δδ1Hαi vs. (Δδ13Cαi- Δδ13Cβi) pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. Thus, linear analysis of chemical shifts (LACS) can be used to detect referencing errors and to recalibrate the 1H and 13C chemical shift scales if needed. The analysis requires only that the signals be identified with distinct residue types (intra-residue spin systems). LACS allows errors in calibration to be detected and corrected in advance of sequence-specific assignments and secondary structure determinations. Signals that do not fit the linear model (outliers) deserve scrutiny since they could represent errors in identifying signals with a particular residue, or interesting features such as a cis-peptide bond. LACS provides the basis for the automated detection of such features and for testing reassignment hypotheses. Early detection and correction of errors in referencing and spin system identifications can improve the speed and accuracy of chemical shift assignments and secondary structure determinations. We have used LACS to create a database of offset-corrected chemical shifts corresponding to nearly 1800 BMRB entries: 300 with and 1500 without corresponding three-dimensional (3D) structures. This database can serve as a resource for future analysis of the effects of amino acid sequence and protein secondary and tertiary structure on NMR chemical shifts.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-1717-0  相似文献   

7.
Middle Miocene (14.8–11.9 Ma) deep-sea sediments from ODP Hole 747A (Kerguelen Plateau, southern Indian Ocean) contain abundant, well-preserved and diverse planktonic foraminiferal assemblages. A detailed study of the climatic and hydrographic changes that occurred in this region during the Middle Miocene Climatic Transition led to the identification of an intense cooling phase (the Middle Miocene Shift). Abundance fluctuations of planktonic foraminiferal species with different paleoclimatic affinities, and oxygen and carbon stable isotopes have been integrated in a multi-proxy approach. Reconstruction of changes in foraminiferal faunal composition and diversity through time were the basis for identification of three foraminiferal biofacies. The most prominent faunal change took place at 13.8 Ma, when a fauna with warm-water affinity (marked by high abundance of Globorotalia miozea group and Globoturborotalita woodi plexus) was replaced by an oligotypic, opportunistic fauna with typical polar characters and dominated by neogloboquadrinids. This faunal change is interpreted as the result of foraminiferal migration from adjacent bioprovinces, caused by modifications in climate and hydrography. A positive 2.0‰ shift in δ18O (interpreted as the Mi3 event) and a related positive 1.0‰ shift in δ13C (corresponding to the CM6 event) accompanied this faunal turnover. These are interpreted to reflect substantial reorganization of Southern Ocean waters, the northward migration of the Polar Front and a strong increase in primary productivity. The second faunal change took place at 12.9 Ma and was characterized by the gradual decrease in abundance of the neogloboquadrinids and the recovery of Globorotalia praescitula/scitula group and Globigerinita glutinata. A positive 1.5‰ shift in δ18O (interpreted as the Mi4 event) and a concurrent gradual negative shift in δ13C accompanied this faunal change, witnessing further modifications of the climate/ocean system. Variations in sea surface temperature, considered as the main factor causing changes of surface hydrography at the Kerguelen Plateau, seem to have been driven by obliquity and long-term eccentricity, thus suggesting a key role played by the astronomical forcing on the evolution of Southern Ocean dynamics during the Middle Miocene. Also an evident 1.2 Myr modulation of the δ13C record suggests a main control of the long-term obliquity cycles on the carbon cycle dynamics. Particularly, the Mi3/CM6 events exactly fit with a node of the 1.2 Myr modulation cycles. This confirms the key role played by orbital parameters on high-latitude temperatures and Antarctic ice volume, and indirectly on global carbon burial and/or productivity. This climatic transition was marked also by changes in surface hydrography. From 14.8 to 13.8 Ma an intermediate-strength thermocline controlled by seasonality developed just below the photic zone. Weaker seasonality characterized the interval from 13.8 to 12.9 Ma, when the thermocline became shallower and sharper and favored intermediate-water foraminifers. From 12.9 Ma, seasonality increased again and an intermediate-strength thermocline re-developed.  相似文献   

8.
Developmental Control of CAM in Peperomia scandens   总被引:1,自引:0,他引:1       下载免费PDF全文
Experiments were conducted to examine the development of photosynthetic carbon metabolism in Peperomia scandens, a tropical epiphyte. Leaves were sampled during a 10-day period when they were between 30 to 165 days old. P. scandens exhibits a C3 to CAM-cycling to CAM shift during maturation with the magnitude of CAM increasing with age. Initially, during both day and night, no significant CO2 uptake or diurnal acid flux was evident. C3 gas exchange was detected at 41 days of age with a gradual shift towards CAM gas exchange maximized thereafter. An acidity flux of 130 to 150 microequivalents per gram fresh weight was evident by 41 days. Between 40 and 90 days, the leaves shifted their CO2 uptake pattern from a daytime to a nighttime peak. After 90 days, the leaves remained in CAM. The δ13C values became progressively less negative as the leaves matured. In the 30-day-old leaves, the δ13C value was −21.1% while in the 165-day-old leaves the δ13C value was −18.3%. The time-dependent shift from C3 to CAM-cycling to CAM in P. scandens does not appear to result from changes in water, light, or temperature regimes since these variables were constant for all leaves sampled.  相似文献   

9.
Natural exchanges of carbon (C) between the atmosphere, the oceans, and terrestrial ecosystems are currently being modified through human activities as a result of fossil fuel burning and the conversion of tropical forests to agricultural land. These activities have led to a steady increase of atmospheric carbon dioxide (CO2) over the last two Centuries. The goal of this study was to determine the potential of temperate agroforestry systems to sequester C in soil. Therefore, changes in the soil organic C (SOC) and nitrogen (N) pools were quantified and the δ13C and δ15N stable isotope technique was applied to assess soil C and N dynamics in a 13-year old hybrid poplar alley cropping system in Southern Canada. Results from this study showed that after 13 years of alley cropping the SOC and N pools did not differ significantly (p = 0.01) with distance from the tree row, although a trend of a larger SOC and N pool near the tree row could be observed. Soil organic C after 13 years of alley cropping, was 19 mg C g−1 compared to 11 mg C g−1 upon initiation of agroforestry. Soil organic C and N were not evenly distributed throughout the plow layer. The largest C and N pool occurred in the top 20 cm, which is due to the accumulation of organic material in the upper horizons as a result of no-till cultivation. The entire soil, to a 40 cm depth, showed a δ13C shift to that of C3 residue. This shift reflects the greater input of residues from C3 plants such as that derived from beans, wheat, and hybrid poplar leaf litterfall. The proportion of C derived from a C3 source ranged from 64 to 69% to a 40 cm depth. The soil δ15N signature of this study is similar to that of mineral soil, and reflect values characteristic of N mineralization processes. However, the entire soil shows a positive shift in δ15N as a result of historical additions of manure and current use of mineral fertilizers, and ongoing processes of denitrification and nitrate leaching, which leads to an enrichment of the soil.  相似文献   

10.
We have quantified the environmental and physiological parameters responsible for stable isotopic disequilibrium in the non-symbiotic planktic foraminifera, Globigerina bulloides, via controlled experiments with living specimens. Individual test chambers secreted in the laboratory were amputated, pooled with other chambers from defined positions in the shell whorl and analyzed for their carbon and oxygen isotopic composition. When temperature, δ18Owater and δ13C of ΣCO2 are kept constant, the chamber δ13C and δ18O values increase 2.6 and 0.8%. respectively between the smallest chambers (chs. 1–9, shell size ≈180 μm) and final chamber (ch. 14, shell size ≈500 μm). Feeding experiments with prey of different δ13C values show that 8–15% of the chamber δ13C signal is due to the incorporation of metabolic CO2. The observed ontogenetic trend is responsible for the stable isotope size-dependency in this species and may be due to a fractionation mechanism involving the incorporation of metabolic CO2 during calcification. Temperature experiments show that shell δ18O varies as predicted by paleotemperature equations, but is offset from equilibrium. We present correction factors that should be applied to δ13C and δ18O data from well constrained size ranges to yield either oxygen isotope equilibrium or ambient δ13C of seawater ΣCO2. Our results suggest that for paleoceanographic applications, shells in the 270–320 μm size range are optimal for paleoenvironmental reconstructions  相似文献   

11.
Benthic foraminifers in the size-fraction greater than 0.073 mm were studied in 88 Paleocene to Pleistocene samples from Deep Sea Drilling Project Site 525 (Hole 525A, Walvis Ridge, eastern south Atlantic). Clustering of the samples on the basis of the 86 most abundant foraminifers (in total, 331 taxa were identified) allowed separating two major assemblage zones: the Paleocene to Eocene interval, and the Oligocene to Pleistocene interval. Each of these, in turn, were subdivided into three minor subzones as follows: lower upper Paleocene (approx. 62.4 to 57.8 Ma); upper upper Paleocene (56.6 to 56.2 Ma); lower and middle Eocene (55.3 to 46.8 Ma); upper Oligocene to middle Miocene (25.3 to 16 Ma); middle Miocene to Pliocene (15.7 to 4.2 Ma); and lower Pleistocene (0.4 to 0.02 Ma), with only minor differences with the previous zone. Some very abundant taxa span most of the column studies (Bolivina huneri, Cassidulina subglobosa, Eponides bradyi, E. weddellensis, Gavelinella micra, Oridorsalis umbonatus, etc.). Several of the faunal breaks recorded coincide with conspicuous minima in the specific diversity curve, thus suggesting that the corresponding turnovers signal the final stages of periods of faunal impoverishment. At least one major bottom-water temperature drop (as derived from δ18O data) is synchronous with a decrease in the foraminiferal specific diversity. On the other hand, a specific diversity maximum in the middle Miocene might be associated with a δ13C increase at approx. 16 to 12 Ma. Highest foraminiferal abundances (up to 600–800 individuals per gram of dry sediment) occurred in the late Paleocene and in the early Pleistocene, in coincidence with the lowest diversity figures calculated. The magnitude of the most important faunal turnover recorded, between the middle Eocene and the late Oligocene, is magnified in our data set by the large hiatus which separates the middle Eocene from the upper Oligocene sediments. Considerably smaller overturns occurred within the late Paleocene (in coincidence with changes in the specific diversity, absolute abundance of foraminiferal tests, and δ13C), and in the middle Miocene (in coincidence with a specific diversity maximum and a δ13C excursion). New information on the morphology and the stratigraphic ranges of several species is furnished. For all the taxa recorded the number of occurrences, total number of individuals identified and first and last appearances are listed.  相似文献   

12.
The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds.  相似文献   

13.
Jun Xu  Min Zhang  Ping Xie   《Harmful algae》2007,6(5):679-685
Carbon stable isotope analysis of surface bloom scum and subsurface seston samples was conducted in shallow eutrophic lakes in China during warm seasons from 2003 to 2004. δ13C values of bloom scum were always higher (averaged 5‰) than those of seston in this study, and the possible reasons were attributed to (i) direct use of atmospheric CO2 at the air–water interface, (ii) decrease in 13C fractionation due to higher carbon fixation, (iii) active CO2 transport, and/or (iv) HCO3 accumulation. Negative correlation between δ13Cscum − δ13Cseston and pH in the test lakes indicated that phytoplankton at the subsurface water column increased isotopic enrichment under the carbon limitation along with the increase of pH, which might in turn decreased the differences in δ13C between the subsurface seston and the surface scums. Significant positive correlations of seston δ13C with total concentrations of nitrogen and phosphorus in water column suggested that the increase in δ13C of seston with trophic state was depending on nutrient (N or P, or both) supply. Our study showed that δ13C of phytoplankton was indicative of carbon utilization, primary productivity, and nutrient supply among the eutrophic lakes.  相似文献   

14.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   

15.
Relationships of foliar carbon isotope composition (δ13C) with foliar C, N, P, K, Ca, Mg contents and their ratios of 219 C3 species leaf samples, obtained in August in 2004 to 2007 from 82 high altitude grassland sites on the Qinghai-Tibet Plateau China, were examined. This was done with reference to the proposition that foliar δ13C increases with altitude and separately for the life-form groups of graminoids, forbs and shrubs and for the genera Stipa and Kobresia. For all samples, foliar δ13C was negatively related to foliar K, P and ∑K+ Ca+ Mg, and positively correlated to foliar C, C/N and C/P. The significance of these correlations differed for the taxonomic and life-form groups. Lack of a relationship of foliar δ13C with foliar N was inconsistent with the majority of studies that have shown foliar δ13C to be positively related to foliar N due to a decrease of Ci/Ca (the ratio between intercellular and atmospheric concentration of CO2) and explained as a result of greater photosynthetic capacity at higher foliar N concentration. However this inconsistency relates to other high altitude studies that have found that photosynthetic capacity remains constant as foliar N increases. After accounting for the altitudinal relationship with foliar δ13C, of the elements only the K effect was significant and was most strongly expressed for Kobresia. It is concluded that factors critical to plant survival and growth at very high altitudes, such as low atmospheric pressure and low temperatures, may preclude expression of relationships between foliar δ13C and foliar elements that have been observed at lower altitudes.  相似文献   

16.
Bender MM 《Plant physiology》1973,52(5):427-430
13C/12C ratios have been found in totally combusted leaves of Crassulacean acid metabolism plants to range from −14 to −33 δ 13C‰ compared with a limestone standard. Crassulacean acid metabolism plants apparently utilize both ribulose-1, 5-diphosphate carboxylase and phosphoenolpyruvate carboxylase to assimilate atmospheric CO2 and, depending on environmental conditions, have 13C/12C ratios indicative of either carboxylase or to any intermediate value. The degree of discrimination against 13C and the resultant 13C/12C ratio from the photosynthetically fixed CO2 is influenced by environmental conditions and is not a specific and fixed characteristic of a Crassulacean acid metabolism plant. Certain Crassulacean acid metabolism plants may shift their ratios as much as 17 δ 13C‰ in specific environments.  相似文献   

17.
Photosynthetic carbon metabolism of a marine grass   总被引:5,自引:4,他引:5       下载免费PDF全文
The δ13C value of a tropical marine grass Thalassia testudinum is −9.04‰. This value is similar to the δ13C value of terrestrial tropical grasses. The δ13C values of the organic acid fraction, the amino acid fraction, the sugar fraction, malic acid, and glucose are: −11.2‰, −13.1‰, −10.1‰, −11.1‰, and −11.5‰, respectively. The δ13C values of malic acid and glucose of Thalassia are similar to the δ13C values of these intermediates in sorghum leaves and attest to the presence of the photosynthetic C4-dicarboxylic acid pathway in this marine grass. The inorganic HCO3 for the growth of the grass fluctuates between −6.7 to −2.7‰ during the day. If CO2 fixation in Thalassia is catalyzed by phosphoenolpyruvate carboxylase (which would result in a −3‰ fractionation between HCO3 and malic acid), the predicted δ13C value for Thalassia would be −9.7 to −5.7‰. This range is close to the observed range of −12.6 to −7.8‰ for Thalassia and agree with the operation of the C4-dicarboxylic acid pathway in this plant. The early products of the fixation of HCO3 in the leaf sections are malic acid and aspartic acid which are similar to the early products of CO2 fixation in C4 terrestrial plants.  相似文献   

18.
Isotopic studies of multi-taxa terrestrial vertebrate assemblages allow determination of paleoclimatic and paleoecological aspects on account of the different information supplied by each taxon. The late Campanian-early Maastrichtian “Lo Hueco” Fossil-Lagerstätte (central eastern Spain), located at a subtropical paleolatitude of ~31°N, constitutes an ideal setting to carry out this task due to its abundant and diverse vertebrate assemblage. Local δ18OPO4 values estimated from δ18OPO4 values of theropods, sauropods, crocodyliforms, and turtles are close to δ18OH2O values observed at modern subtropical latitudes. Theropod δ18OH2O values are lower than those shown by crocodyliforms and turtles, indicating that terrestrial endothermic taxa record δ18OH2O values throughout the year, whereas semiaquatic ectothermic taxa δ18OH2O values represent local meteoric waters over a shorter time period when conditions are favorable for bioapatite synthesis (warm season). Temperatures calculated by combining theropod, crocodyliform, and turtle δ18OH2O values and gar δ18OPO4 have enabled us to estimate seasonal variability as the difference between mean annual temperature (MAT, yielded by theropods) and temperature of the warmest months (TWMs, provided by crocodyliforms and turtles). ΔTWMs-MAT value does not point to a significantly different seasonal thermal variability when compared to modern coastal subtropical meteorological stations and Late Cretaceous rudists from eastern Tethys. Bioapatite and bulk organic matter δ13C values point to a C3 environment in the “Lo Hueco” area. The estimated fractionation between sauropod enamel and diet is ~15‰. While waiting for paleoecological information yielded by the ongoing morphological study of the “Lo Hueco” crocodyliforms, δ13C and δ18OCO3 results point to incorporation of food items with brackish influence, but preferential ingestion of freshwater. “Lo Hueco” turtles showed the lowest δ13C and δ18OCO3 values of the vertebrate assemblage, likely indicating a diet based on a mixture of aquatic and terrestrial C3 vegetation and/or invertebrates and ingestion of freshwater.  相似文献   

19.
DoxA is a cytochrome P-450 monooxygenase involved in the late stages of daunorubicin and doxorubicin biosynthesis that has a broad substrate specificity for anthracycline glycone substrates. Recombinant DoxA was purified to homogeneity from Streptomyces lividans transformed with a plasmid containing the Streptomyces sp. strain C5 doxA gene under the control of the strong SnpR-activated snpA promoter. The purified enzyme was a monomeric, soluble protein with an apparent Mr of 47,000. Purified DoxA catalyzed the 13-hydroxylation of 13-deoxydaunorubicin, the 13-oxidation of 13-dihydrocarminomycin and 13-dihydrodaunorubicin, and the 14-hydroxylation of daunorubicin. The pH optimum for heme activation was pH 7.5, and the temperature optimum was 30°C. The kcat/Km values for the oxidation of anthracycline substrates by purified DoxA, incubated with appropriate electron-donating components, were as follows: for 13-deoxydaunorubicin, 22,000 M−1 · s−1; for 13-dihydrodaunorubicin, 14,000 M−1 · s−1; for 13-dihydrocarminomycin, 280 M−1 · s−1; and for daunorubicin, 130 M−1 · s−1. Our results indicate that the conversion of daunorubicin to doxorubicin by this enzyme is not a favored reaction and that the main anthracycline flux through the late steps of the daunorubicin biosynthetic pathway catalyzed by DoxA is likely directed through the 4-O-methyl series of anthracyclines.  相似文献   

20.
The anaerobic oxidation of methane (AOM) is a key process in the global methane cycle, and the majority of methane formed in marine sediments is oxidized in this way. Here we present results of an in vitro 13CH4 labeling study (δ13CH4, ~5,400‰) in which microorganisms that perform AOM in a microbial mat from the Black Sea were used. During 316 days of incubation, the 13C uptake into the mat biomass increased steadily, and there were remarkable differences for individual bacterial and archaeal lipid compounds. The greatest shifts were observed for bacterial fatty acids (e.g., hexadec-11-enoic acid [16:1Δ11]; difference between the δ13C at the start and the end of the experiment [Δδ13Cstart-end], ~160‰). In contrast, bacterial glycerol diethers exhibited only slight changes in δ13C (Δδ13Cstart-end, ~10‰). Differences were also found for individual archaeal lipids. Relatively high uptake of methane-derived carbon was observed for archaeol (Δδ13Cstart-end, ~25‰), a monounsaturated archaeol, and biphytanes, whereas for sn-2-hydroxyarchaeol there was considerably less change in the δ13C (Δδ13Cstart-end, ~2‰). Moreover, an increase in the uptake of 13C for compounds with a higher number of double bonds within a suite of polyunsaturated 2,6,10,15,19-pentamethyleicosenes indicated that in methanotrophic archaea there is a biosynthetic pathway similar to that proposed for methanogenic archaea. The presence of group-specific biomarkers (for ANME-1 and ANME-2 associations) and the observation that there were differences in 13C uptake into specific lipid compounds confirmed that multiple phylogenetically distinct microorganisms participate to various extents in biomass formation linked to AOM. However, the greater 13C uptake into the lipids of the sulfate-reducing bacteria (SRB) than into the lipids of archaea supports the hypothesis that there is autotrophic growth of SRB on small methane-derived carbon compounds supplied by the methane oxidizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号