首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleurotus salmoneostramineus is a pink mushroom. This pink color is a protein and forms a complex with 3H-indol-3-one. The gene encoding the pink-colored protein from P. salmoneostramineus (PsPCP) was cloned, and its sequence was elucidated as a 681-bp. The ORF encodes 226 amino acid residues. The amino acid sequence of the protein did not show any significant homology in the DDBJ/EMBL/GenBank databases. Recombinant PsPCP was expressed as the soluble form in E. coli. The reaction mixture of purified recombinant PsPCP and 3H-indol-3-one showed a pink color as the native pigment. A real-time PCR analysis revealed the strong expression of PsPCP in the primordium formation stage of the life cycle of the fungus; however, its expression decreased with the maturation of the fruit body. A comparison of PsPCP gene expression profiles between two strains revealed high levels in the dark-colored strain.  相似文献   

2.
Escherichia coli has been used for recombinant protein production for many years. However, no native E. coli promoters have been found for constitutive expression in LB medium. To obtain high-expression E. coli promoters active in LB medium, we inserted various promoter regions upstream of eEmRFP that encodes a red fluorescent protein. Among the selected promoters, only colonies of srlA promoter transformants turned red on LB plate. srlA is a gene that regulates sorbitol utilization. The addition of sorbitol enhanced eEmRFP expression but glucose and other sugars repressed, indicating that srlAp is a sorbitol-enhanced glucose-repressed promoter. To analyze the srlAp sequence, a novel site-directed mutagenesis method was developed. Since we demonstrated that homologous recombination in E. coli could occur between 12-bp sequences, 12-bp overlapping sequences were attached to the set of primers that were designed to produce a full-length plasmid, denoted “one-round PCR product.” Using this method, we identified that the srlA promoter region was 100 bp. Further, the sequence adjacent to the start codon was found to be essential for high expression, suggesting that the traditionally used restriction enzyme sites for cloning in the promoter region have hindered expression. The srlA-driven expression system and DNA manipulation with one-round PCR products are useful tools in E. coli genetic engineering.  相似文献   

3.
ThetraT gene is one of the F factor transfer genes and encodes an outer membrane protein which is involved in interactions between anEscherichia coli and its surroundings. This protein was altered so as to permit the expression of foreign proteins on the outer membrane ofE. coli in this study. A 729-bp DNA fragment, including the leader and entire structural gene sequence oftraT, was amplified and obtained by PCR. This sequence was then subcloned downstream of thetac promoter of pDR540, resulting in a TraT expression vector, pT2. Here, we report that the expression of TraT protein, fused either with a partial pre-S antigen of hepatitis B virus (60 and 98 amino acids, respectively) or with the snake venom rhodostomin (72 amino acids), was successfully achieved on the outer membrane ofE. coli, using the pT2 plasmid. This result was demonstrated using dot blot and immunofluorescence analysis. This finding supports the notion that the pT2 plasmid can be used as anE. coli display system. This system can detect a foreign peptide of about 100 amino acid residues in length on the bacterial surface.  相似文献   

4.
Porphyromonas gingivalis is a strict anaerobic bacterium mainly responsible for periodontal disease in oral cavity. Putative GTPase gene (pgp) of this bacterium was cloned and its recombinant protein (rPGP) was produced in Escherichia coli. Based on the amino acid sequence of SGP that is a GTP-binding protein of Streptococcus mutans, putative GTPase amino acid sequence was deduced in the data base of genome sequences of Porphyromonas gingivalis. A 900-bp PCR fragment was amplified with P. gingivalis genomic DNA as a template and cloned into E. coli JM109. Then pgp was transferred into pQE-30 expression vector to make pQE-PGP for production of rPGP. This protein was produced and purified by Ni-NTA affinity column chromatography. Anti-PGP antibody was also produced in Sprague Dawley rats. Using Westernblot analysis with this antibody, it was confirmed that the rPGP produced in E. coli was identical to that of donor strain. Furthermore, by Southernblot analysis it was revealed that the pgp was originated from P. gingivalis. By immunoprecipitation with anti-PGP antibody and N-terminal amino acid sequence analysis it was found that PGP was able to bind to acetate kinase, which was reported to be a secondary signaling molecule in anaerobic microorganisms. Therefore, these results imply that P. gingivalis produces putative GTPase and this protein might play a potential role in signaling pathway in oral biofilm formation.  相似文献   

5.
Repetitious gene cassettes that encode the consensus decapeptide repeat of Mytilus edulis bioadhesive protein were designed, constructed, and expressed in Escherichia coli. The bioadhesive precursor (BP) with a relative molecular mass of 25 000 was expressed from one 600-bp gene at levels approaching 60% of total cell protein in strains employing T7 RNA polymerase for induction and carrying a repetitious gene comprised of a 30-bp unit repeat that accounts for E. coli codon bias. BP forms intracellular inclusions and yet methionine was processed from the N-terminus of the purified protein, as shown by amino acid composition and N-terminal sequencing, to give an authentic consensus precursor protein. Correspodence to: A. J. Salerno  相似文献   

6.
A cDNA clone coding for mature C. reinhardtii ferredoxin has been isolated from a cDNA library using PCR and two oligonucleotide primers based on the N- and C-termini of the protein's amino acid sequence. The nucleotidic sequence of the PCR fragment (299 bp) agreed well with the amino acid sequence since a single conservative substitution (Thr-7 to Ser) could be deduced. The PCR fragment was inserted into the expression vector pTrc 99A, using the incorporated NcoI and BamHI restriction sites and the construction used to transform E. coli (DH5α F′). After subsequent large scale expression and purification of the recombinant protein, biochemical and biophysical analysis have indicated that the product isolated from E. coli is homologous to native ferredoxin isolated from green algae.  相似文献   

7.
In this study, a novel heterozygous antimicrobial peptide MLH was synthesized, expressed, purified, and characterized. The peptide Md-cec-LL-37_Hp (MLH) was selected through bioinformatic analysis using musca domestica antimicrobial peptide (Cec-Med), human antimicrobial peptide LL-37, and helicobacter pylori antimicrobial peptide (Hp) as parent peptides. The target gene was synthesized by overlap extension PCR (SOE-PCR) and connected to the expression vector pET-32a (+), and the recombinant plasmid pET-32a-MLH was transformed to Escherichia coli for constructing pET-32a-MLH/BL21 (DE3). Isopropyl β-D-thiogalactoside (IPTG) was used to induce protein expression, and SDS-PAGE and western blot were adopted to test the target protein. And fermentation condition was optimized to get the mass expression of the fusion protein. The Ni2+ affinity chromatographic column was used to purify. Active heterozygous peptide was obtained after renaturation. Finally, the activity of the heterozygous antimicrobial peptide was identified. The fusion peptide showed significant antimicrobial effect on both E. coli and Staphylococcus aureus.  相似文献   

8.
Cry4Aa produced by Bacillus thuringiensis is a dipteran-specific toxin and is, therefore, of great interest for developing a bioinsecticide to control mosquitoes. However, the expression of Cry4Aa in Escherichia coli is relatively low, which is a major disadvantage in its development as a bioinsecticide. In this study, to establish an effective production system, a 1,914-bp modified gene (cry4Aa-S1) encoding Cry4Aa was designed and synthesized in accordance with the G + C content and codon preference of E. coli genes without altering the encoded amino acid sequence. The cry4Aa-S1 gene allowed a significant improvement in expression level, over five-fold, compared to that of the original cry4Aa gene. The product of the cry4Aa-S1 gene showed the same level of insecticidal activity against Culex pipiens larvae as that from cry4Aa. This suggested that unfavorable codon usage was one of the reasons for poor expression of cry4Aa in E. coli, and, therefore, changing the cry4Aa codons to accord with the codon usage in E. coli led to efficient production of Cry4Aa. Efficient production of Cry4Aa in E. coli can be a powerful measure to prepare a sufficient amount of Cry4Aa protein for both basic analytical and applied researches.  相似文献   

9.
Summary. The cDNA encoding D-aspartate oxidase (DASPO) was cloned from mouse kidney RNA by RT–PCR. Sequence analysis showed that it contained a 1023-bp open reading frame encoding a protein of 341 amino acid residues. The protein was expressed in Escherichia coli with or without an N-terminal His-tag and had functional DASPO activity that was highly specific for D-aspartate and N-methyl-D-aspartate. To investigate the roles of the Arg-216 and Arg-237 residues of the mouse DASPO (mDASPO), we generated clones with several single amino acid substitutions of these residues in an N-terminally His-tagged mDASPO. These substitutions significantly reduced the activity of the recombinant enzyme against acidic D-amino acids and did not confer any additional specificity to other amino acids. These results suggest that the Arg-216 and Arg-237 residues of mDASPO are catalytically important for full enzyme activity.  相似文献   

10.
AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.Abbreviations MBP maltose binding protein - PCR polymerase chain reaction - Stress70c the cytosolic member of the 70 kDA family of stress-related proteins  相似文献   

11.
The lexA gene of Xanthomonas campestris pathovar citri (X.c. pv. citri) was cloned and sequenced. The 639-bp open reading frame encodes a protein of 213 amino acids that shares substantial sequence homology with the products of previously characterized lexA genes, sharing 46% identity with the LexA protein of Escherichia coli. Amino acids required for autocatalytic cleavage of LexA are conserved in the X.c. pv. citri protein, whereas domains thought to mediate DNA binding differ markedly from those of LexA proteins from E. coli and other bacteria. The X.c. pv. citri LexA protein was overexpressed in E. coli, and SDS-polyacrylamide gel electrophoresis revealed a molecular size of 23 kDa for the purified protein. A lexA mutant of X.c. pv. citri was constructed by gene replacement, and the basal level of recA expression in this mutant was shown to be similar to that for wild-type cells exposed to a DNA-damaging agent. These results indicate that LexA functions as a repressor of recA expression in X.c. pv. citri. Received: 1 September 1999 / Accepted: 25 October 1999  相似文献   

12.
There is an increasing demand for efficient and effective methods to engineer protein variants for industrial applications, structural biology and drug development. We describe a PCR-based strategy that produces multi-site-saturation mutagenic expression library using a circular plasmid carrying the wild-type gene. This restriction digestion- and ligation-independent method involves three steps: 1) synthesis of the degenerate oligonucleotide primers, 2) incorporation of the mutations through PCR, 3) transformation into the expression host. Our strategy is demonstrated through successful construction of an E. coli K12 malic enzyme expression library that contains members with simultaneous mutations on amino acid residues G311, D345 and G397. This method is in principle compatible with any circular vector that can be propagated with a dam+ E. coli host to generate protein variant library with multiple changes, including mutation, short sequence deletion and insertion, or any mix of them.  相似文献   

13.
L-色氨酸作为一种必需氨基酸,广泛应用于食品、饲料和医药等领域。目前,微生物法生产L-色氨酸存在转化率低等问题。为此,本研究通过敲除L-色氨酸操纵子阻遏蛋白(L-tryptophan operon repressor protein, trpR)、替换l-色氨酸弱化子(trpL)、引入抗反馈调节的aroGfbr等,获得可积累11.80 g/L L-色氨酸的底盘菌株大肠杆菌(Escherichia coli)TRP3。在此基础上,将L-色氨酸合成途径分为中心代谢途径模块、莽草酸(shikimic acid, SA)途径至分支酸(chorismic acid, CHA)模块、分支酸至L-色氨酸模块,并借助启动子工程,通过平衡中心代谢途径模块、莽草酸途径至分支酸模块、分支酸至L-色氨酸模块,获得工程菌E.coli TRP9。在5 L发酵罐中,工程菌E.coli TRP9的L-色氨酸产量提升至36.08 g/L,糖酸转化率提升至18.55%,达到理论转化率的81.7%。本研究利用模块工程策略,构建了高产L-色氨酸生产菌株,为l-色氨酸的规模化生产奠定了良好的基础。  相似文献   

14.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

15.
In this study, a cDNA encoding a small RNA-binding protein was isolated from a Nicotiana sylvestris cDNA library. The predicted protein (RGP-3) is 144 amino acid residues long, and contains a consensus sequence-type RNA binding domain (CS-RBD) of 83 amino acids and a short glycine-rich region of 15 amino acids. RGP-3 synthesized in Escherichia coli has high affinity for poly(U). Immunocytochemical analysis indicated that RGP-3 is localized in the nucleoplasm, and that RGP-1b, a related protein reported previously, is localized in the nucleolus. Possible roles of these proteins in pre-mRNA or pre-rRNA processing are discussed.  相似文献   

16.
The gene encoding proline dehydrogenase (ProDH) from Pseudomonas fluorescens was isolated using PCR amplification and cloned into pET23a expression vector. The expression of the recombinant target enzyme was induced by addition of IPTG. The produced His-fusion enzyme was purified and its kinetic properties were studied. The 3D structure modeling was also performed to identify key amino acids involved in FAD-binding and catalysis. The PCR product contained a 1033 bp open reading frame encoding 345 amino acid residue polypeptide chain. SDS-PAGE analysis revealed a MW of 40 kDa, whereas the native enzyme exhibited a MW of 40 kDa suggesting a monomeric protein. The K m and V max values of the P. fluorescens ProDH were estimated to be 35 mM and 116 μmol/min, respectively. ProDH activity was stable at alkaline pH and the highest activity was observed at 30°C and pH 8.5. The modeling analysis of the three dimensional structure elucidated that Lys-173 and Asp-202, which were oriented near the hydroxyl group of the substrate, were essential residues for the ProDH activity. This study, to our knowledge, is the first data on the cloning and biochemical and structural properties of P. fluorescens ProDH.  相似文献   

17.
Yao  Shaochang  Luo  Shuzhen  Pan  Chunliu  Xiong  Weijiao  Xiao  Dong  Wang  Aiqin  Zhan  Jie  He  Longfei 《Plant and Soil》2020,448(1-2):479-494
Aims

Metacaspases are cysteine-dependent proteases, which play essential roles in programmed cell death (PCD), and caspase-3-like protease is the crucial executioner. However, its response mechanism to aluminum (Al)-induced PCD is still elusive.

Methods

Here, the type I metacaspase gene in peanut (Arachis hypoganea L.), AhMC1, was cloned from the Al-sensitive cultivar ZH2. Physiological and biochemical methods, as well as gene expression analyses, were employed to explore its function in Al-induced PCD in peanut root tips.

Results

AhMC1 had a 1068-bp open reading frame, encoding a peptide of 355 amino acids, and the purified protein exhibited a high caspase-3-like protease activity. Its expression levels in different tissues of peanut varieties ZH2 and 99–1507 (Al-tolerant) varied under Al-stress conditions. The subcellular localization indicated that AhMC1 was transferred from mitochondria into the cytoplasm. Furthermore, overexpressing AhMC1 reduced the resistance to Al stress. Sense transgenic plants showed a low relative root growth rate, and reduced superoxide dismutase, peroxidase, and catalase activities, compared with wild-type and antisense transgenic plants under Al-stress conditions, but had a high root-cell death rate, and increased Al and maleic dialdehyde contents.

Conclusions

The data suggest that metacaspase AhMC1 is a positive factor in Al-induced PCD in peanut root tips.

  相似文献   

18.
Recent advances in cell-free protein synthesis have enabled the folding and assembly of full-length antibodies at high titers with extracts from prokaryotic cells. Coupled with the facile engineering of the Escherichia coli translation machinery, E. coli based in vitro protein synthesis reactions have emerged as a leading source of IgG molecules with nonnatural amino acids incorporated at specific locations for producing homogeneous antibody–drug conjugates (ADCs). While this has been demonstrated with extract produced in batch fermentation mode, continuous extract fermentation would facilitate supplying material for large-scale manufacturing of protein therapeutics. To accomplish this, the IgG-folding chaperones DsbC and FkpA, and orthogonal tRNA for nonnatural amino acid production were integrated onto the chromosome with high strength constitutive promoters. This enabled co-expression of all three factors at a consistently high level in the extract strain for the duration of a 5-day continuous fermentation. Cell-free protein synthesis reactions with extract produced from cells grown continuously yielded titers of IgG containing nonnatural amino acids above those from extract produced in batch fermentations. In addition, the quality of the synthesized IgGs and the potency of ADC produced with continuously fermented extract were indistinguishable from those produced with the batch extract. These experiments demonstrate that continuous fermentation of E. coli to produce extract for cell-free protein synthesis is feasible and helps unlock the potential for cell-free protein synthesis as a platform for biopharmaceutical production.  相似文献   

19.
A 274-bp conserved fragment of chiA (chiA-CF) was amplified from the genomic DNA of Isoptericola jiangsuensis CLG (DSM 21863, CCTCC AB208287) using the specific PCR primers. Based on chiA-CF sequences, a 5233-bp DNA fragment was obtained by self-formed adaptor PCR. DNA sequencing analysis revealed there were two contiguous open reading frames coding for the precursors of Is-chiA [871 amino acids (aa)] and Is-chiB (561 aa) in the 5233-bp DNA fragment. The Is-chiA and Is-chiB exhibited 58% and 62% identity with ArChiA and ArChiB chitinase from Arthrobacter sp. TAD20, respectively. The Is-chiA and Is-chiB genes were cloned into expression vector pET28a (+) and expressed in Escherichia coli BL21 (DE3) with isopropyl-β-d-thiogalactopyranoside induction. Is-chiA and Is-chiB were 92 kDa and 60 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed chitobiosidase and endochitinase activity, respectively. Is-chiA and Is-chiB were purified by Ni-nitrilotriacetic acid affinity chromatography and the characteristics of both Is-chiA and Is-chiB were studied.  相似文献   

20.
We examined the expression of choB, encoding cholesterol oxidase of Brevibacterium sterolicum ATCC 21387, in Escherichia coli JM105 and Streptomyces lividans TK23 using various deletion DNA fragments within the 5′-flanking region. The enzyme activity could be detected intracellularly in E. coli only when the 5′-flanking region was reduced to less than 256-bp and choB was transcribed by the lac promoter. A large amount of the enzyme were produced as inactive inclusion bodies when ChoB protein was fused with the NH2-terminal portion of LacZ protein. In contrast, choB with more than 256-bp of the 5′-flanking region was efficiently expressed in S. lividans TK23, and about 85 times as much of the active enzyme (170 U/ml) was secreted into the culture filtrate as with B. sterolicum in flask culture. These results suggest that the promoter of choB exist within 256-bp of the 5′-flanking region and can be efficiently recognized by the RNA polymerase of S. lividans. The characteristics of the enzyme purified from the culture filtrate of the S. lividans transformant and that of B. sterolicum were identical although the NH2-terminal amino acid sequence of the enzyme from the S. lividans transformant was 6 amino acids shorter than that from B. sterolicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号