首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
创伤性脊髓损伤会导致患者感觉运动功能的严重缺失,严重影响生活质量,给社会和家庭带来沉重负担.针对创伤性脊髓损伤目前主要集中于处理原发性创伤损伤以及通过康复训练提高生活自理能力等方法,而对于神经再生及运动功能恢复却未有有效方法.以干细胞及生物材料为核心的再生医学技术的发展,为创伤性脊髓损伤的再生修复提供了新的治疗的可能.再生医学修复脊髓损伤的研究已逐渐进入临床试验阶段,为脊髓损伤患者的治疗带来了希望.本文对干细胞或功能细胞以及生物材料治疗创伤性脊髓损伤的临床研究现状进行了综述.  相似文献   

2.
成年哺乳类脊髓损伤后的修复与再生是一项复杂且尚未解决的挑战.随着全球经济的增长,脊髓损伤的发生率呈上升趋势.脊髓损伤可能导致永久性的运动功能障碍和感觉丧失,给患者及其家属带来极大的经济压力和心理负担.因此,迫切需要开发有效的治疗脊髓损伤的新策略.近年来,应用外源性或内源性神经元中继的治疗手段为脊髓损伤后环路重建提供了新的思路.将干细胞或生物材料等移植物作用于脊髓损伤区,可改善损伤区局部微环境,诱导神经干细胞定向分化为神经元,促进脊髓环路重建和功能恢复,因此成为较有临床应用前景的方法.本综述主要介绍细胞移植治疗、组织工程策略和基因调控等方法在修复受损脊髓的神经网络中的应用,并讨论了脊髓损伤后新生神经元是否具有潜在的功能整合,重建受损神经环路,并恢复其运动和感觉功能等问题.  相似文献   

3.
脊髓损伤(spinal cord injury,SCI)是神经系统最严重的创伤之一,其所造成的高致残率和严重并发症,给个人、家庭和社会均造成巨大负担。脊髓损伤后,由于原发性损伤和继发性损伤等一系列病理变化,使轴突再生和受损神经元的重塑变得非常困难,其中微环境的紊乱是导致二次损伤恢复的主要障碍。脊髓损伤治疗的药物选择对于其预后有较大影响。其中,生长因子(growth factors,GFs)在中枢神经系统发育与损伤修复中具有重要的调控作用。目前,利用GFs干预治疗锯齿动物SCI后的结构和功能恢复方面,包括神经发生、轴突生长、神经保护和再生,促进血管生成、组织修复、保护内源性神经干细胞等方面已取得较为满意的效果,为SCI的临床治疗提供了良好的应用前景。随着对GFs的研究深入,单一的GFs难以满足脊髓损伤后复杂的生理病理变化。因此,探索多种GFs的联合应用以期达到协同的神经再生和功能恢复,是目前治疗SCI的重要策略之一。由于GFs是大分子蛋白质类药物,存在半衰期短,以及原位注射在损伤部位易流失等缺点限制了GFs的临床应用。因此,很多研究将GFs结合不同生物材料治疗SCI,以此克服GFs本身的缺陷,并进一步延长该类药物的修复效果。本综述归纳总结了几种典型的GFs对SCI修复的研究进展和可能的作用机制,并展望不同的生物材料结合GFs提高SCI修复效果的未来发展前景。  相似文献   

4.
脊髓损伤(spinalcordinjury,SCI)是一种严重的损伤,它对患者的影响是相当持久的,SCI治疗的难点主要是由于损伤后脊髓中的微环境不利于神经细胞的再生、轴突的生长和新突触的形成,从而影响了脊髓组织的修复。现在SCI治疗的策略就是要改善损伤脊髓微环境,减少不利因素,从而促进脊髓结构修复和功能重建。本研究综述近年来逐渐发展起来的药物及靶向治疗方法,为SCI的新治疗提供参考依据,真正提高患者的生活质量。  相似文献   

5.
谢琳  房萍  林金飞  潘洪超  张帆  申延琴 《遗传》2013,35(4):495-501
成年斑马鱼(Danio rerio)具有很强的脊髓损伤后自主修复的能力, 但目前其机制不明。为了研究斑马鱼中脑组织对脊髓再生的影响, 文章应用成年斑马鱼脊髓损伤模型, 采用实时定量PCR方法和原位杂交技术, 检测了斑马鱼脑中胶质细胞源性神经营养因子(gdnf)和一氧化氮合酶(nos)基因在脊髓损伤后4 h、12 h、6 d、11 d的表达情况, 展示了这两种基因在斑马鱼脑内不同核团的动态表达变化。结果显示, 成年斑马鱼脊髓损伤后, 神经营养因子gdnf基因在损伤急性期(4 h、12 h)和神经修复期(6 d、11 d)于斑马鱼脑内呈现显著性升高(P<0.05),而一氧化氮合酶基因nos的表达于损伤急性期显著性升高 (P<0.05), 随后下降, 并在修复期 (11 d)显著降低(P<0.05)。这表明, 脊髓损伤后, 高表达gdnf基因同时低表达nos基因的脑环境给脊髓损伤提供了良好的神经再生微环境, 从而可能促进轴突的再生长及运动能力的恢复。  相似文献   

6.
犬脊髓损伤治疗动物模型   总被引:3,自引:0,他引:3  
目的 建立犬脊髓损伤治疗动物模型 ,为实验研究提供直接的病例材料。方法 人工损伤犬脊髓 ,使用直流电场刺激使脊髓损伤恢复。结果 人工犬脊髓损伤模型建立 ,直流电场刺激治疗可恢复神经功能。结论直流电场刺激在不同时期对犬脊髓再生及功能恢复均有明显促进作用 ,能促进脊髓再生 ,使脊髓通路更快更完善的建立  相似文献   

7.
脊髓损伤(spinal cord injury,SCI)往往导致患者下肢活动功能受限,甚至瘫痪,降低患者生活质量,且治愈率低。髓磷脂相关抑制因子(myelin associated inhibitors,MAIs)是抑制受损中枢神经系统(central nervous system,CNS)再生修复的一个重要因素。对MAIs及其信号通路的干扰能有效逆转CNS神经再生抑制信号,促进脊髓损伤后轴突的再生。MAIs抑制轴突再生信号通路的发现及其深入研究为损伤脊髓的免疫治疗提供了充分的理论依据和研究靶点。将对抑制神经再生信号通路中MAIs及其受体的生物学功能新进展以及以此为治疗靶点设计的脊髓损伤免疫治疗策略作一综述。  相似文献   

8.
脊髓损伤造成神经组织坏死,传导通路中断,损伤平面以下运动和感觉功能丧失,导致瘫痪甚至死亡.脊髓损伤的病理变化极其复杂,早期主要为分子基因水平的改变,亚急性期主要为细胞组织水平的变化.这些变化引发继发性损伤,致使组织坏死、神经元死亡、轴突断裂并形成由瘢痕组织包裹的囊性空洞,抑制轴突再生.目前临床上仅能通过手术减压或者使用药物对症干预,无法从根本上改善受损神经的功能.脊髓损伤后功能难以恢复有多方面的原因:炎症反应贯穿脊髓损伤全过程,炎症介质导致损伤区域的神经元及胶质细胞变性坏死,轴突因瓦勒变性而萎缩;神经元再生能力弱,轴突再生乏力,并且瘢痕组织导致轴突无法穿越损伤区域与远端的轴突形成联系.本文就脊髓损伤后的病理改变进行综述并探讨修复策略.  相似文献   

9.
神经导管研究与进展   总被引:2,自引:0,他引:2  
随着机械化程度的提高和交通事业的发展,周围神经损伤发生率大幅度的上升。虽然通过手术的方法可以进行端对端的缝合,但是神经恢复的效果仍然不理想,特别是存在神经短距离缺损时,神经导管可为神经的修复提供一个合适的微环境,使得神经纤维能够再生并顺利到达远端。本文介绍了受损神经恢复效果的评价标准,神经导管材料的研究进展,神经生长因子对神经再生的影响因素及作用机理,和神经导管的制备方法,且在总结前人研究的基础上,给出适合于神经导管支架所需的材料和结构要求。  相似文献   

10.
星形胶质细胞是中枢神经系统主要的胶质细胞 ,对神经元具有绝缘、营养、保护和支持作用。它们在中枢神经系统损伤和修复中也具有重要的作用 ,一方面星形胶质细胞可合成神经营养因子 ,促进神经再生[1~ 3] ,另一方面合成神经生长抑制因子 ,如硫酸软骨素蛋白多糖等 [4 ] ,抑制神经再生 ,尤其是损伤恢复后期形成星胶瘢痕被认为是神经再生的机械性障碍。脊髓损伤后的修复一直是神经科学领域研究的一个重要课题 ,随着分子生物学和精密方法、仪器的发展 ,离体研究被越来越多地采用。星形胶质细胞是神经再生微环境中的主要成分 ,深入研究星形胶质细…  相似文献   

11.
随着脊髓损伤治疗研究的快速发展,越来越多的基础研究成果开始向临床转化.非人灵长类动物具有与人类相似的基因序列和相近的神经解剖结构,因此被广泛应用于脊髓损伤研究的临床转化前阶段.运动行为学评价是脊髓损伤研究的重要手段之一,几乎在所有的脊髓损伤相关工作中都有所应用,为评估诊疗措施的有效性提供了重要参考.近年来,非人灵长类的运动行为学研究迅速发展,使得运动行为测试从单一、粗放的评估演变成复杂化、精细化的观测.在此背景下,越来越多的相关实验通过非人灵长类的运动行为测试来分析脊髓损伤程度的变化及有关干预方案的疗效.本文从非人灵长类独特的脊髓运动控制通路及运动行为能力入手,结合其在脊髓损伤相关研究中的应用,针对不同部位的运动行为评估方法进行了综述,分析了目前运动行为测试所存在的不足,并指出了未来可能的发展方向.  相似文献   

12.
脊髓损伤(SCI)由于复杂病理生理和神经修复再生困难,至今仍旧是难以攻克的医学难题,而干细胞因其神经再生和神经保护特性被认为是治疗SCI最有希望的方法。其中人脐带间充质干细胞(HUC-MSCs)近年培养分化方法不断改进、神经修复机制初步阐明,联合移植等综合治疗方案也不断实践,使HUC-MSCs移植治疗效果提高。另外关于HUC-MSCs治疗SCI的临床试验逐渐开展,术后患者神经功能恢复改善且无严重并发症出现,表明干细胞移植应用于人体是安全有效的。本文就HUC-MSCs治疗SCI的研究状况及进展进行综述。  相似文献   

13.
脊髓损伤是严重的中枢神经系统疾病,脊髓损伤致使大量神经细胞缺失、凋亡,如何补充缺失的神经细胞,建立有利轴突再生的微环境成为脊髓损伤治疗的关键。雪旺细胞(schwann cells,SCs)分泌的多种神经营养因子,能维护神经元的存活及挽救凋亡的神经元。骨髓基质干细胞(bone marrow stromal cells,BMSCs)具有多向分化潜能,作为种子细胞替代缺失的神经元。  相似文献   

14.
脊髓损伤后的常规治疗手段是在有效时间内进行手术缓减外力压迫,防止脊髓神经进一步受损。细胞替代治疗理论上可治愈脊髓损伤,不同类型细胞可从各角度产生治疗作用,包括损伤后的脊髓轴突再生、神经元再建和轴突髓鞘化等,进而促进功能恢复。对近年来干细胞治疗脊髓损伤研究中的最新结果进行了概述,以期为干细胞治疗脊髓损伤的研究提供参考。  相似文献   

15.
脊髓损伤(spinal cord injury, SCI)的治疗和康复一直是临床医学领域的重大难题。现代医学虽然显著提高了脊髓损伤患者的存活率,然而在改善患者损伤神经功能方面进展甚微,其原因主要在于脊髓损伤后复杂的病理生理变化。在脊髓损伤的病理过程中,原发性损伤对脊髓神经结构的伤害难以逆转,因此目前国内外研究治疗脊髓损伤的方法主要围绕减轻继发性损伤和促进再生来开展。SCI后炎症反应始终存在,这与免疫细胞在炎症反应的不同时间、不同损伤部位发挥不同作用密切相关。该文就免疫细胞在SCI后炎症微环境中的作用做一简要综述。  相似文献   

16.
在意外事故中发生脊髓断裂、导致身体瘫痪的脊椎损伤,医疗现场所要求的治疗法的关键在于神经的再生。通过抑制阻碍神经生长因子来解决神经再生的问题,围绕着这一新的治疗理念,展开了针对酶、抗体以及低分子化合物的开发竞争。[编者按]  相似文献   

17.
<正>脊髓损伤是尚未解决的重大医学难题.在脊髓损伤研究中,损伤后重建神经元联系被奉为研究圣杯.人们为此进行了外源细胞移植(包括神经干细胞以及各种成年体细胞)的实验研究,却鲜有成功[1].最近,李晓光和孙毅团队在Proceedings of the National Academy of Sciences of the United States of America上连续发表2篇文章,成果令人兴奋.他们在脊髓损伤治疗中通过载有神经营养素  相似文献   

18.
糖尿病是一种常见的慢性代谢异常性疾病,可通过血糖异常诱导体内内环境紊乱,引起一系列急性或慢性并发症。慢性高血糖可引起大血管和微血管病变,该过程由错综复杂的分子机制协同调控,例如炎症反应、细胞内应激作用、细胞焦亡和细胞铁死亡等。糖尿病可抑制脊髓损伤后血脊屏障修复,加重神经功能损伤,从而不利于运动功能恢复。周细胞是神经血管单元的重要组成部分,参与调控血管再生、毛细血管血流量以及血脊屏障渗透性。脊髓损伤后,血脊屏障遭到破坏,周细胞覆盖率显著降低,血管正常功能受到巨大影响。糖尿病不仅参与调控周细胞的收缩表型和信号传导,而且改变周细胞分泌基因组谱,影响周细胞正常功能。此外,有研究证实,糖尿病促进脊髓损伤后周细胞丢失。本综述系统阐述了糖尿病对血管系统中周细胞的调控作用,及其介导的周细胞损伤对脊髓损伤后血脊屏障修复影响的研究进展。  相似文献   

19.
脊髓损伤(spinal cord injury,SCI)是一种由于脊髓外部损伤或内部病变引起的暂时性或永久性的功能损伤,其症状包括肌肉功能损伤、自主运动功能减退或丧失等。目前,流行病学调查发现,我国SCI患病率较高,具有较高的社会和医疗负担。因此,合理引导SCI病人进行治疗和康复尤为重要。硫化氢(hydrogen sulfide,H2S)是一种重要的神经信号分子,近年来H2S对SCI康复的作用机制逐渐成为研究热点,例如一些国内外研究团队对SCI后缺血-再灌注损伤(ischemia reperfusion injury,I/R injury)、降低SCI后氧化应激及抗炎作用等机制,以及SCI康复临床治疗研究均取得了一定的成果。本文通过H2S对SCI康复的机制研究和临床治疗发展进行综述,旨在为后续研究及临床应用提供参考。  相似文献   

20.
脊髓损伤(spinal cord injury,SCI)是一种由于脊髓外部损伤或内部病变引起的暂时性或永久性的功能损伤,其症状包括肌肉功能损伤、自主运动功能减退或丧失等。目前,流行病学调查发现,我国SCI患病率较高,具有较高的社会和医疗负担。因此,合理引导SCI病人进行治疗和康复尤为重要。硫化氢(hydrogen sulfide,H2S)是一种重要的神经信号分子,近年来H2S对SCI康复的作用机制逐渐成为研究热点,例如一些国内外研究团队对SCI后缺血-再灌注损伤(ischemia reperfusion injury,I/R injury)、降低SCI后氧化应激及抗炎作用等机制,以及SCI康复临床治疗研究均取得了一定的成果。本文通过H2S对SCI康复的机制研究和临床治疗发展进行综述,旨在为后续研究及临床应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号