首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pasteuria penetrans is a gram positive bacterium that prevents Meloidogyne spp. from reproducing and diminishes their ability to penetrate roots. The attachment of the endospores to the cuticle of the nematodes is the first step in the life cycle of the bacterium and is essential for its reproduction. As a preliminary study to a field solarization test, the effects of temperature on the attachment of P. penetrans on Meloidogyne arenaria race 1 were investigated. Preexposing second-stage juveniles (J2) of M. arenaria to approximately 30 °C in water before exposing them to endospores increased their receptivity to endospore attachment when compared to treating J2 at 25 °C or 35 °C. In tests with soil, highest attachment occurred when J2 were incubated in soil infested with endospores and maintained at 20 °C to 30 °C for 4 days. Heating J2 in soil to sublethal temperatures (35 °C to 40 °C) decreased endospore attachment. Incubating P. penetrans endospores in soil at 30 °C to 70 °C for 5 hours a day over 10 days resulted in reductions of endospore attachment to nematodes as temperatures of incubation increased to 50 °C and higher.  相似文献   

2.
Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.  相似文献   

3.
A rapid method for collection of Pasteuria penetrans endospores was developed. Roots containing P. penetrans-infected root-knot nematode females were softened by pectinase digestion, mechanically processed, and filtered to collect large numbers of viable endospores. This method obviates laborious handpicking of Pasteuria-infected females and yields endospores competent to attach to and infect nematodes. Endospores are suitable for morphology studies and DNA preparations.  相似文献   

4.
Pasteuria penetrans has .been identified as an important biological control agent of root-knot nematodes. In this study the use of tally thresholds was evaluated for estimating P. penetrans endospore attachment to second-stage juveniles (J2) of Meloidogyne spp. A tally threshold (T) is defined as the maximum number of individuals in a sample unit that may be treated as absent based on binomial sampling. Three different data sets that originated from centrifugal bioassay, incubation bioassay, and field experiments were investigated. The data sets each contained 70, 33, and 111 estimates of the mean number of endospores attached per J2 (m), respectively. Empirical relationships between m and proportions of J2 with ≤T endospores attached (PT) were developed using parameters from the linear regression of ln(m) on PT (0 < PT < 1): ln(m) = a + b PT, T was set to 0, 1, 2, 3, 4, 5, 8, and 10 endospores/J2. The results indicated that the variances of linear equations tended to decrease with increasing T values for all three data sets. T values of 0, 1, 8, and 10 endospores/J2 for centrifugal bioassay and incubation bioassay, and of 0, 1, 2, and 3 endospores/J2 for field experiments were associated with an r² of >= 0.8. These T values were robust for estimating m from PT, reducing the variability as well as the time and effort spent in estimating the mean number of endospores attached per J2.  相似文献   

5.
Pasteuria penetrans is a promising biological control agent of plant-parasitic nematodes. This study was conducted to determine effects of temperature on the bacterium''s development in Meloidogyne arenaria. Developmental stages of P. penetrans were viewed with a compound microscope and verified with scanning electron microscopy within each nematode at 100 accumulated degree-day intervals by tracking accumulated degree-days at three temperatures (21, 28, and 35 °C). Five predominant developmental stages of P. penetrans were identified with light microscopy: endospore germination, vegetative growth, differentiation, sporulation, and maturation. Mature endospores were detected at 28, 35, and >90 calendar days at 35, 28, and 21 °C, respectively. The number of accumulated degree-days required for P. penetrans to reach a specific developmental stage was different for each temperature. Differences were observed in the development of P. penetrans at 21, 28, and 35 °C based on regression values fitted for data from 100 to 600 accumulated degree-days. A linear response was observed between 100 to 600 accumulated degree-days; however, after 600 accumulated degree-days the rate of development of P. penetrans leveled off at 21 and 28 °C, whereas at 35 °C the rate decreased. Results suggest that accumulated degree-days may be useful only in predicting early-developmental stages of P. penetrans.  相似文献   

6.
Pasteuria penetrans isolate P-20 has been attributed as the cause of soil suppressiveness to peanut root-knot nematode in Florida. In this study, P. penetrans was transferred from a suppressive site to a new site and established by growing susceptible hosts to the peanut root-knot nematode during both summer and winter seasons. When two soil fumigants, 1,3-dichloropropene (1,3-D) and chloropicrin, were applied broadcast at the rate of 168 liters/ha and 263 kg/ha, respectively, the bacterium was not adversely affected by 1,3-D but was adversely affected by chloropicrin. In autumn 2005, after the harvest of the second peanut crop, the greatest number of J2 was recorded in the chloropicrin-treated plots, followed by the non-fumigated plots and 1,3-D-fumigated plots. The percentage J2 encumbered with endospores, endospores per J2 and percentage of P. penetrans-infected females were greatest in the non-fumigated plots, followed by 1,3-D- and chloropicrin-fumigated plots. This study demonstrates that P. penetrans can be transferred from a suppressive site to a new site and increased to suppressive densities against the peanut root-knot nematode.  相似文献   

7.
Phaseolus vulgaris lines with heat-stable resistance to Meloidogyne spp. may be needed to manage root-knot nematodes in tropical regions. Resistance expression before and during the process of nematode penetration and development in resistant genotypes were studied at pre- and postinoculation temperatures of 24 °C and 24 °C, 24 °C and 28 °C, 28 °C and 24 °C, and 28 °C and 28 °C. Resistance was effective at all temperature regimes examined, with fewer nematodes in roots of a resistant line compared with a susceptible line. Preinoculation temperature did not modify resistance expression to later infections by root-knot nematodes. However, postinoculation temperatures affected development of Meloidogyne spp. in both the resistant and susceptible bean lines tested. The more rapid development of nematodes to adults at the higher postinoculation temperature of 28 °C in both bean lines suggests direct temperature effects on nematode development instead of on resistance expression of either of two gene systems. Also, resistance was stable at 30 °C and 32 °C.  相似文献   

8.
Greenhouse and growth room experiments were conducted to investigate the effect of host plant in relation to different nematode inoculum levels, and temperature fluctuations on the development of Pasteuria penetrans. Host plant affected the development of P. penetrans indirectly through its effect on nematode development. Endospores collected from Meloidogyne javanica females reared on different hosts did not show any differences in subsequent attachment and infectivity. The numbers of endospores produced per infected female were reduced with increasing numbers of females parasitizing okra and tomato roots. Fluctuating temperatures retarded the development of P. penetrans. The life cycle of the parasite was completed faster at approximately constant temperatures close to 30 °C than when the temperature fluctuated away from 30 °C. The temperature of irrigation water did not affect the duration of life cycle of P. penetrans.  相似文献   

9.
The long-term persistence and suppressiveness of Pasteuria penetrans against Meloidogyne arenaria race 1 were investigated in a formerly root-knot nematode suppressive site following 9 years of continuous cultivation of three treatments and 4 years of continuous peanut. The three treatments were two M. arenaria race 1 nonhost crops, bahiagrass (Paspalum notatum cv. Pensacola var. Tifton 9), rhizomal peanut (Arachis glabrata cv. Florigraze), and weed fallow. Two root-knot nematode susceptible weeds commonly observed in weed fallow plots were hairy indigo (Indigofera hirsuta) and alyce clover (Alysicarpus vaginalis). The percentage of J2 with endospores attached reached the highest level of 87% in 2000 in weed fallow, and 63% and 53% in 2002 in bahiagrass and rhizomal peanut, respectively. The percentage of endospore-filled females extracted from peanut roots grown in weed fallow plots increased from nondetectable in 1999 to 56% in 2002, whereas the percentages in bahiagrass and rhizomal peanut plots were 41% and 16%, respectively. Over 4 years, however, there was no strong evidence that endospores densities reached suppressive levels because peanut roots, pods, and pegs were heavily galled, and yields were suppressed. This might be attributed to the discovery of M. javanica infecting peanut in this field in early autumn 2001. A laboratory test confirmed that although the P. penetrans isolate specific to M. arenaria attached to M. javanica J2, no development occurred. In summary, P. penetrans increased on M. arenaria over a 4-year period, but apparently because of infection of M. javanica on peanut at the field site root-knot disease was not suppressed. This was confirmed by a suppressive soil test that showed a higher level of soil suppressiveness than occurred in the field (P ≤ 0.01).  相似文献   

10.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

11.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

12.
We evaluated the ability of the nematode-pathogenic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes) to reduce root penetration and population increase of Pratylenchus penetrans on potato. Experiments were conducted at 24 C in a growth chamber. When nematodes were placed on the soil surface 8 cm from a 14-day-old potato cutting, the fungus decreased the number entering roots by 25%. To determine the effect of the fungus on population increase after the nematodes entered roots, we transplanted potato cuttings infected with P. penetrans into Hirsutella-infested and uninfested soil. After 60 days, the total number of nematodes (roots and soil) was 20 ± 4% lower in Hirsutella-infested than in uninfested soil.  相似文献   

13.
The biological control of Meloidogyne arenaria on peanut (Arachis hypogaea) by Pasteuria penetrans was evaluated using a six x six factorial experiment in field microplots over 2 years. The main factors were six inoculum levels of second-stage juveniles (J2) of M. arenaria race 1 (0, 40, 200, 1,000, 5,000, and 25,000 J2/microplot, except that the highest level was 20,000 J2/microplot in 1995) and six infestation levels of P. penetrans as percentages of J2 with endospores attached (0, 20, 40, 60, 80, and 100%). The results were similar in 1994 and 1995. Numbers of eggs per root system, J2 per 100 cm³ soil at harvest, root galls, and pod galls increased with increasing nematode inoculum levels and decreased with increasing P. penetrans infestation levels (P ≤ 0.05), except that there was no effect of P. penetrans infestation levels on J2 per 100 cm³ soil in 1994 (P> 0.05). There were no statistical interaction effects between the inoculum levels of J2 and the infestation levels of P. penetrans (P > 0.05). When the infestation level was increased by 10%, the number of eggs per root system, root galls, and pod galls decreased 7.8% to 9.4%, 7.0% to 8.5%, and 8.0% to 8.7% in 1994 and 1995, respectively, whereas J2 per 100 cm³ soil decreased 8.8% in 1995 (P ≤ 0.05). The initial infestation level of P. penetrans contributed 81% to 95% of the total suppression of pod galls, whereas the infection of J2 of the subsequent generations contributed only 5% to 19% suppression of pod galls. The major suppressive mechanism of M. arenaria race 1 by P. penetrans on peanut is the initial endospore infestation of J2 at planting.  相似文献   

14.
Four similar growth chamber experiments were conducted to test the hypothesis that the initial population density (Pi) of Pratylenchus penetrans influences the severity of interactive effects of P. penetrans and Verticillium dahliae on shoot growth, photosynthesis, and tuber yield of Russet Burbank potato. In each experiment, three population densities of P. penetrans with and without concomitant inoculation with V. dahliae were compared with nematode-free controls. The three specific Pi of JR penetrans tested varied from experiment to experiment but fell in the ranges 0.8-2.5, 1.8-3.9, 2.1-8.8, and 7.5-32.4 nematodes/cm³ soil. Inoculum of V. dahliaewas mixed into soil, and the assayed density was 5.4 propagules/gram dry soil. Plants were grown 60 to 80 days in a controlled environment. Plant growth parameters in two experiments indicated significant interactions between P. penetrans and V. dahliae. In the absence of V. dahliae, P. penetrans did not reduce plant growth and tuber yield below that of the nematode-free control or did so only at the highest one or two population densities tested. In the presence of K dahliae, the lowest population density significantly reduced shoot weight and photosynthesis in three and four experiments, respectively. Higher densities had no additional effect on shoot weight and caused additional reductions in photosynthesis in only one experiment. Population densities of 0.8 and 7.5 nematodes/cm³ soil reduced tuber yield by 51% and 45%, whereas higher densities had no effect or a 15% additional effect, respectively. These data indicate that interactive effects between P. penetrans and V. dahliae on Russet Burbank potato are manifested at P. penetrans population densities less than 1 nematode/cm³ soil and that the nematode population density must be substantially higher before additional effects are apparent.  相似文献   

15.
16.
The bacteria Pasteuria spp. have been identified as among the most promising of several microbial organisms currently under investigation as biological control agents of plant-parasitic nematodes. As part of our goal to develop methods to discriminate isolates of Pasteuria penetrans with different host preferences, we investigated the potential of developing antibody probes to identify endospores of different isolates of P. penetrans. Polyclonal IgY antibodies were raised in chickens against endospores of P. penetrans isolates P20 and P100. Hens were injected with P20 or P100 endospore suspensions and boosted at 14 days. Anti-spore titers were determined with ELISA on yolk extracts of individual eggs as a function of time. The highest titers were found in eggs produced at 22 to 35 days after initial injections. Yolk extracts showing the highest titers were combined and processed to provide partially purified IgY preparations. SDS-PAGE and immunoblot analyses identified protein antigens with Mr values of 23-24, 46, and 57-59 KDa common to both P20 and P100 endospores. One protein antigen with an Mr value of 62 KDa was unique to the PI00 endospores. The IgY antibodies reduced the attachment of Pasteuria endospores to their nematode hosts, indicating antibody interaction with antigens on the endospore surface that are involved in the recognition and attachment processes.  相似文献   

17.
Roots of seedlings of red clover and alfalfa growing on 10⁻¹ Hoagland and Arnon solution agar were inoculated with various combinations of Meloidogyne incognita and Pratylenchus penetrans. Egg-laying by P. penetrans decreased as the number of nematodes, the ratio of entrant M. incognita to entrant P. penetrans, and the priority of invasion of roots by M. incognita increased. Embryogeny and hatching of eggs of P. penetrans, and development of larvae of M. incognita, were not affected. In red clover, the greatest red uction occurred when there were 65 entrant nematodes, the ratio of M. incognita:P. penetrans was 4:1 and M. incognita was inoculated four days prior to P. penetrans. In alfalfa, the less-favorable host for both nematodes, the greatest reduction occurred when there were 45 entrant nematodes, the ratio of M. incognita:P. penetrans was 2:1, and M. incognita was inoculated 4 days prior to P. penetrans.  相似文献   

18.
The incidence of adhesion of Pasteuria penetrans endospores to Meloidogyne incognita second-stage juveniles (J2) was studied after pretreatment of the latter with monoclonal antibodies (MAb), cationized ferritin, and other organic molecules in replicated trials. Monoclonal antibodies developed to a cuticular epitope of M. incognita second-stage juveniles gave significant reductions in attachment of P. penetrans endospores to treated nematodes. MAb bound to the entire length of J2 except for the area of the lateral field, where binding was restricted to the incisures. Since reductions in attachment with MAb treatment were modest, it is uncertain if these results implicated a specific surface protein as a factor that interacted in binding of the endospore to the nematode cuticle. Endospore attachment was decreased following treatment of the nematode with the detergents sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). Endospore attachment to live nematodes was significantly greater than attachment to dead nematodes. Attachment rates of three P. penetrans isolates to M. incognita race 3 varied between isolates. The effects of neuraminidase, pronase, pepsin, trypsin, lipase, and Na periodate on endospore attachment were inconsistent. The cationic dye alcian blue, which binds sulfate and carboxyl groups on acidic glycans, had no consistent effect on endospore attachment. The incidence of endospore attachment was significantly lower but modest, at best, for nematodes that were treated with cationized ferritin alone or cationized ferritin following monoclonal antibody. The lack of consistency or extreme reduction in most experiments suggests that attachment of P. penetrans spores to M. incognita is not specified by only one physico-chemical factor, but may involve a combination of at least two physico-chemical factors (including surface charge and movement of the J2). This points to a need for analysis of combined or factorial treatment effects.  相似文献   

19.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%.  相似文献   

20.
The pathogenicity of Heterodera glycines, Meloidogyne incognita, and Pratylenchus penetrans on H. glycines-resistant ''Bryan,'' tolerant-susceptible ''G88-20092,'' and intolerant-susceptible ''Tracy M'' soybean cultivars was tested using plants grown in 800 cm³ of soil in 15-cm-diam. clay pots in three greenhouse experiments. Plants were inoculated with 0, 1,000, 3,000, or 9,000 H. glycines race 3 or M. incognita eggs, or vermiform stages of P. penetrans/pot. Forty days after inoculation, nmnbers of all three nematodes, except H. glycines on Bryan, generally increased with increasing inoculum levels in Experiment I. Heterodera glycines and M. incognita significantly decreased growth only of Tracy M. At 45 and 57 days after inoculation with 6,000 individuals/pot in experiments II and III, respectively, significantly more P. penetrans and M. incognita than H. glycines were found on Bryan. However, H. glycines and M. incognita population densities were greater than P. penetrans on G88-20092 and Tracy M. Growth of Tracy M infected by H. glycines and M. incognita and growth of G88-20092 infected by M. incognita decreased in Experiment III. Pratylenchus penetrans did not affect plant growth. Reduction in plant growth differed according to the particular nematode species and cultivar, indicating that nematodes other than the species for which resistance is targeted can have different effects on cultivars of the same crop species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号