首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm³ soil to the soil surface of each pot, 50 infective juveniles/cm² soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P ≤ 0.05) in the presence of either S. riobrave or H. bacteriophora 180 days following ring nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm² were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave.  相似文献   

2.
Tomato seedlings in a growth chamber were inoculated with 150 Meloidogyne incognita eggs and 25 infective juveniles (IJ)/cm² of Steinernema feltiae, S. riobrave, or Heterorhabditis bacteriophora. With the exception of seedling roots treated with H. bacteriophora, all seedlings treated with entomopathogenic nematodes had fewer M. incognita juveniles inside roots and produced fewer eggs than the control seedlings. Tomato plants in the greenhouse were infested with 4,000 M. incognita eggs and treated 2 weeks before, 1 week before, at the same time, 1 week after, or 2 weeks after with 25 or 125 IJ/cm² of S. feltiae, S. riobrave, or H. bacteriophora. Plants with pre- and post-infestation applications of S. feltiae or S. riobrave suppressed M. incognita. Plants treated with H. bacteriophora 1 week before and at the time of infestation suppressed M. incognita. Increasing the rate of H. bacteriophora and S. feltiae from 25 to 125 IJ/cm² improved M. incognita suppression.  相似文献   

3.
The entomopathogenic nematode species Steinernema feltiae and Heterorhabditis bacteriophora were compared for survival and infectivity of infective juveniles (IJ) collected with a standard White trap (i.e., emerging from hosts and accumulating in water) and later applied to sand (treatment A) to IJ allowed to emerge from hosts into sand (treatment C). Percentage IJ survival and infectivity was compared between treatments for S. feltiae IJ that emerged between days 1 to 3 and days 4 to 6. For H. bacteriophora, percentage IJ survival and infectivity was compared between treatments only for infective juveniles that emerged between days 4 to 6. For S. feltiae IJ percentage survival and infectivity decreased with time (P ≤ 0.05) and was greater (P ≤ 0.05) for IJ from treatment C than for IJ from treatment A. For H. bacteriophora IJ percentage survival decreased (P ≤ 0.05) and percentage infectivity increased (P ≤ 0.05) with time. While percent survival was higher (P ≤ 0.05) for treatment C than for A, percent infectivity was not different between treatments.  相似文献   

4.
Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types.  相似文献   

5.
Laboratory bioassays were conducted to determine the effects of two carbamates, carbofuran (an acetylcholinesterase inhibitor) and fenoxycarb (a juvenile hormone analog), on survival and infectivity of the infective juveniles (IJ) of Steinernema feltiae Umeå strain and Steinernema carpocapsae All strain. Both insecticides caused mortality of IJ in a dose-related fashion. The two nematode species were equally sensitive to fenoxycarb (LD₅₀ ca. 0.03mg/ml). Whereas IJ of S. feltiae were several orders of magnitude more sensitive to carbofuran (LD₅₀ ≤ 0.2 μg/ml) than to fenoxycarb, S. carpocapsae IJ displayed approximately the same degree of sensitivity to carbofuran (LD₅₀ 0.01-0.03 mg/ml) as they did toward fenoxycarb. Toxicity of the carbamates was the same at all exposure periods from 24 to 168 hours'' duration. Determinations of infective doses of nematodes required to cause 50% mortality of Galleria mellonella larvae showed that the infectivity of IJ that survived exposure to either of the two carbamates was not compromised by treatment.  相似文献   

6.
We examined the influence of insect cadaver desiccation on the virulence and production of entomopathogenic nematodes (EPNs), common natural enemies of many soil-dwelling insects. EPNs are often used in biological control, and we investigated the feasibility of applying EPNs within desiccated insect cadavers. Desiccation studies were conducted using the factitious host, Galleria mellonella (Lepidoptera: Pyralidae, wax moth larvae) and three EPN species (Heterorhabditis bacteriophora ‘HB1’, Steinernema carpocapsae ‘All’, and Steinernema riobrave). Weights of individual insect cadavers were tracked daily during the desiccation process, and cohorts were placed into emergence traps when average mass losses reached 50%, 60%, and 70% levels. We tracked the proportion of insect cadavers producing infective juveniles (IJs), the number and virulence of IJs produced from desiccated insect cadavers, and the influence of soil water potentials on IJ production of desiccated insect cadavers. We observed apparent differences in the desiccation rate of the insect cadavers among the three species, as well as apparent differences among the three species in both the proportion of insect cadavers producing IJs and IJ production per insect cadaver. Exposure of desiccated insect cadavers to water potentials greater than −2.75 kPa stimulated IJ emergence. Among the nematode species examined, H. bacteriophora exhibited lower proportions of desiccated insect cadavers producing IJs than the other two species. Desiccation significantly reduced the number of IJs produced from insect cadavers. At the 60% mass loss level, however, desiccated insect cadavers from each of the three species successfully produced IJs when exposed to moist sand, suggesting that insect cadaver desiccation may be a useful approach for biological control of soil insect pests.  相似文献   

7.
The oriental fruit moth (OFM), Grapholita molesta (Busck), which is among the most important insect pests of peaches and nectarines, has developed resistance to a wide range of insecticides. We investigated the ability of the entomopathogenic nematodes (EPN) Steinernema carpocapsae (Weiser), S. feltiae (Filipjev), S. riobrave (Cabanillas et al.), and Heterorhabditis marelatus (Liu and Berry) to control OFM under laboratory and fruit bin conditions. At a dosage of 10 infective juveniles (IJ)/cm2 in the laboratory, S. carpocapsae caused 63%, S. feltiae 87.8%, S. riobrave 75.6%, and H. marelatus 67.1% OFM mortality. All four nematode species caused significant OFM larval mortality in comparison to the nontreated controls. Steinernema feltiae was used for the bin assays due to the higher OFM mortality it caused than the other tested EPN species and to its ability to find OFM under cryptic environments. Diapausing cocooned OFM larvae in miniature fruit bins were susceptible to IJ of S. feltiae in infested corner supports and cardboard strips. Treatment of bins with suspensions of 10 or 25 S. feltiae IJ/ml water with wetting agent (Silwet L77) resulted in 33.3 to 59% and 77.7 to 81.6% OFM mortality in corner supports and cardboard strips, respectively. This paper presents new information on the use of EPN, specifically S. feltiae, as nonchemical means of OFM control.  相似文献   

8.
The ability of Steinernema feltiae or Heterorhabditis bacteriophora infective juveniles (IJ), when applied to the soil surface, to infect a Galleria mellonella larva at the base of a soil-filled cup (276 cm³) was evaluated in the presence and absence of 100 larvae of a non-target insect, the aphid midge Aphidoletes aphidimyza, near the soil surface. In all four trials with either S. feltiae or H. bacteriophora, A. aphidimyza presence did not affect the number of IJ finding and infecting a G. mellonella larva. Steinernema feltiae and H. bacteriophora IJ movement (as measured by the percentage of IJ aggregating on either side of an experimental arena) in the presence of one or many A. aphidimyza larvae was evaluated in agar- and soil-filled petri dishes, respectively. Infective juvenile movement in the presence of A. aphidimyza did not differ from random, indicating that IJ were not attracted to A. aphidimyza. It is suggested, therefore, that A. aphidimyza does not reduce IJ efficacy when these two forms of biological control agent are present together in a field situation even though it is known that A. aphidimyza is susceptible to IJ of these species.  相似文献   

9.
The vertical distribution of Pratylenchus scribneri populations was monitored under irrigated corn and potato grown in loamy sand soil. population estimates were based on the number of nematodes recovered from 100-cm³ soil samples and the roots contained therein. Reproduction was assessed by counting the number of second-stage juveniles. An index of population maturity was computed to evaluate the age structure of populations. At no time were nematodes distributed uniformly among five soil depths from 0 to 37.5 cm deep. During the summer (June-September), changes in the total number of P. scribneri and the number of second-stage juveniles recovered were not consistent among the depths sampled. Early (April-June) and late (September-November) in the season, changes in the abundance, reproduction, and maturity of populations were similar among depths. The timing and pattern of increases in numbers of nematodes suggests that variation in the abundance of P. scribneri in the soil profile beneath potato and corn was caused primarily by reproduction rather than the movement of nematodes.  相似文献   

10.
A method for the cryopreservation of third-stage infective juveniles (IJ) of Steinernema carpocapsae and Heterorhabiditis bacteriophora was developed. Cryoprotection was achieved by incubating the nematodes in 22% glycerol (S. carpocapsae) or 14% glycerol (H. bacteriophora) for 24 hours, followed by 70% methanol at 0 C for 10 minutes. The viability of S. carpocapsae frozen in liquid nitrogen as 20 μl volumes spread over cover slip glass was > 80%. Survival of H. bacteriophora frozen on glass varied from 10 to 60% but was improved to > 80% by replacing the glass with filter paper. Cryopreservation and storage of 1-ml aliqots of S. carpocapsae IJ resulted in > 50% survival after 8 months; pathogenicity was retained and normal in vitro development took place. Trehalose and glycerol levels increased and glycogen levels decreased during incubation of S. carpocapsae IJ in glycerol. Normal levels of trehalose, glycerol and glycogen were restored during post freezing rehydration.  相似文献   

11.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.  相似文献   

12.
The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm2); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm2 on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.  相似文献   

13.
Spores of an unidentified bacterium were discovered adhering to cuticles of third-stage infective juvenile (IJ) Steinernema diaprepesi endemic in a central Florida citrus orchard. The spores were cup-shaped, 5 to 6 mm in length, and contained a central endospore. Based on 16S rDNA gene sequencing, the bacterium is closely related to the insect pathogens Paenibacillus popilliae and P. lentimorbus. However, unlike the latter bacteria, the Paenibacillus sp. is non-fastidious and grew readily on several standard media. The bacterium did not attach to cuticles of several entomopathogenic or plant-parasitic nematodes tested, suggesting host specificity to S. diaprepesi. Attachment of Paenibacillus sp. to the third-stage cuticle of S. diaprepesi differed from Paenibacillus spp. associated with heterorhabditid entomopathogenic nematodes, which attach to the IJ sheath (second-stage cuticle). The inability to detect endospores within the body of S. diaprepesi indicates that the bacterial association with the nematode is phoretic. The Paenibacillus sp. showed limited virulence to Diaprepes abbreviatus, requiring inoculation of larvae with 108 spores to achieve death of the insect and reproduction of the bacterium. The effect of the bacterium on the nematode population biology was studied in 25-cm-long vertical sand columns. A single D. abbreviatus larva was confined below 15-cm depth, and the soil surface was inoculated with either spore-free or spore-encumbered IJ nematodes. After 7 days, the proportion of IJ below 5-cm depth was seven-fold greater for spore-free IJ than for spore-encumbered nematodes. Mortality of D. abbreviatus larvae was 72% greater (P <= 0.01) for spore-free compared to spore-encumbered S. diaprepesi. More than 5 times as many progeny IJs (P <= 0.01) were produced by spore-free compared to spore-encumbered nematodes. These data suggest that the bacterium is a component of the D. abbreviatus food web with some potential to regulate a natural enemy of the insect.  相似文献   

14.
When infective juveniles ofSteinernema scapterisci Nguyen &Smart were released on the soil surface in the field and in the laboratory, some of them moved downward through the soil at least 10 cm in 5 days and infected and killed mole crickets. When released 2 cm below the soil surface, most of the juveniles moved into the upper 2 cm layer of soil, but some moved downward 10 cm. When placed at the center of a 16-cm soil column, infective juveniles moved in both directions with three times more moving downward than upward. Infective juveniles were more efficient in killing mole crickets in the field than in the laboratory.  相似文献   

15.
The infection behavior of Steinernema carpocapsae infective juveniles (IJ) was investigated in the presence and absence of S. glaseri. Mixed inoculation of S. carpocapsae with S. glaseri IJ significantly raised the nictation rates of S. carpocapsae IJ. Significantly more S. carpocapsae IJ migrated to the host insect in the mixed inoculation with S. glaseri IJ on agar plates. More S. carpocapsae IJ penetrated into the host insect placed 2 cm below the surface in the mixed inoculation with S. glaseri IJ. More S. glaseri than S. carpocapsae IJ penetrated into hosts placed 7 cm deep. Irrespective of host location, the male ratio of S. carpocapsae IJ established in the host body was always higher in the mixed inoculation with S. glaseri IJ.  相似文献   

16.
The persistence of Heterorhabditis megidis in soil was studied over a 4-week period. On days 0, 2, 14, and 28, infective juveniles (IJ) were extracted by centrifugal flotation, Baermann funnel, and baiting of soil with Tenebrio molitor larvae, which were then dissected. Extraction efficiencies on day 0 were 82% by centrifugal flotation, 56% by Baermann funnel, and 19.8% by bait insect. The relative efficiency of the three methods changed over time. The relationship between the density of nematodes in the soil and the proportion recovered by dissection was non-linear. Up to a dose of approximately 60 IJ/insect, less than 12% became established, while at higher doses (up to 200 IJ/insect) the invasion efficiency was 23%. Mortality of bait insects increased from day 0 to day 2, but decreased to day 28. A novel method of assessing soil pathogenicity by preparing a soil density series and calculating the dose of soil or IJ that kills 50% of the bait insects gave a similar pattern. This method is recommended as a means of tracking changes in pathogenicity over time when bait insect mortality in undiluted soil is at or near 100%. Two methods of preparing a series of Heterorhabditis IJ densities in soil, either by diluting the soil itself with IJ-free soil or by adding diluted suspensions of IJ to the soil, resulted in the same bait insect mortalities.  相似文献   

17.
Rearing conditions have been shown to affect several aspects of entomopathogenic nematode biology, including dispersal behavior and infectivity. The present study explores the differences in development rate of Heterorhabditis bacteriophora and Steinernema carpocapsae when infective juveniles (IJ) were collected in water using the standard White trap method vs. natural emergence from cadavers into sand. We exposed Galleria mellonella to IJ entompopathogenic nematodes treated in one of three ways: collected in a White trap, allowed to emerge directly into sand, or collected in a White trap and treated with a cadaver homogenate. When S. carpocapsae IJ were allowed to emerge from cadavers directly into sand and then allowed to infect new hosts, they developed into adults at a faster rate than IJ that were collected with White traps. The difference in development was not due to differential infection rates. No difference in development stages was detected amount the same H. bacteriophora treatments.  相似文献   

18.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%.  相似文献   

19.
The responses of second-stage juveniles (J2) of Meloidogyne incognita race 3 to calcium alginate pellets containing hyphae of the nematophagous fungi Monacrosporiura cionopagum, M. ellipsosporum, and Hirsutella rhossiliensis were examined using cylinders (38-mm-diam., 40 or 72 mm long) of sand (94% <250-μm particle size). Sand was wetted with a synthetic soil solution (10% moisture, 0.06 bar water potential). A layer of 10 or 20 pellets was placed 4 or 20 mm from one end of the cylinder. After 3, 5, or 13 days, J2 were put on both ends, on one end, or in the center; J2 were extracted from 8-ram-thick sections 1 or 2 days later. All three fungal pellets were repellent; pellets without fungi were not. Aqueous extracts of all pellets and of sand in which fungal pellets had been incubated were repellent, but acetone extracts redissolved in water were not. Injection of CO₂ (20 μl/minute) into the pellet layer attracted J2 and increased fungal-induced mortality. In vials containing four randomly positioned pellets and 17 cm³ of sand or loamy sand, the three fungi suppressed the invasion of cabbage roots by M. javanica J2. Counts of healthy and parasitized nematodes observed in roots or extracted from soil indicated that, in the vial assay, the failure of J2 to penetrate roots resulted primarily from parasitism rather than repulsion. Data were similar whether fungal inoculum consisted of pelletized hyphae or fungal-colonized Steinernema glaseri. Thus, the results indicate that nematode attractants and repellents can have major or negligible effects on the biological control efficacy of pelletized nematophagous fungi. Factors that might influence the importance of substances released by the pellets include the strength, geometry, and duration of gradients; pellet degradation by soil microflora; the nematode species involved; and attractants released by roots.  相似文献   

20.
The Diaprepes root weevil, Diaprepes abbreviatus, is a pest of vegetables, ornamental plants, sugarcane, and citrus in Florida and the Caribbean. The entomopathogenic nematode, Steinernema riobrave, can reduce larval populations of D. abbreviatus substantially. Efficacy of entomopathogenic nematodes, however, may be affected by culture method and formulation. Using D. abbreviatus as the host, we compared the efficacy of two commercial S. riobrave formulations, a liquid and a waterdispersible granule (WDG), with each other and with in vivo produced S. riobrave. Nematodes in the commercial formulations were produced in vitro through liquid fermentation; the in vivo nematodes were cultured in Galleria mellonella and applied in aqueous suspension. Laboratory experiments measured nematode virulence in plastic cups containing soil and seventh-eighth instar D. abbreviatus. One laboratory experiment was conducted using only fresh nematodes (less than 5 days old); another experiment included WDG nematodes that were stored for 25 days at 10 °C. Two field experiments were conducted in which nematodes were applied either to potted citrus (containing D. abbreviatus larvae) placed beneath mature citrus trees or to soil directly beneath the tree. In the latter experiment, efficacy was determined by measuring mortality of caged D. abbreviatus larvae that were buried beneath the soil surface prior to application. Mortality of D. abbreviatus treated with nematodes ranged from 80-98% and 50-75% in laboratory and field experiments, respectively. In all experiments, we did not detect any significant effects of culture method or formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号