首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations have been described in human methylmalonyl CoA mutase (MCM) that exhibit partial defects in enzyme activity, including cobalamin-dependent (i.e., mut-) or interallelic complementation. This work describes mutations in cells from four patients, three of whom exhibit a cobalamin-dependent phenotype and all four of whom exhibit interallelic complementation. Four novel mutations (R694W, G648D, G630E, and G626C) are identified that cluster near the carboxyl terminus of the protein, a region close to another mut- mutation (G717V). Each of these mutations was shown to express a phenotype congruent with that of the parental cell line, after transfection into mut0 fibroblasts, and each exhibits interallelic complementation in cotransfection assays with clones bearing a R93H mutation. The activity of mutant enzymes expressed in Saccharomyces cerevisiae parallels the residual activity of the parental cell lines and exhibits novel sensitivities to pH and salt. The clustering of these mutations identifies a region of MCM that most likely represents the cobalamin-binding domain. The location of this domain, as well as the pattern of sequence preservation between the homologous human and Probiono-bacterium shermanii enzymes, suggests a mechanism for interallelic complementation in which the cobalamin-binding defect is complemented in trans from the heterologous subunits of the dimer.  相似文献   

2.
Familial adenomatous polyposis (FAP) is a disease characterized by the presence of hundreds of adenomatous polyps in the colon and rectum which, if not treated, develop into colorectal cancer. FAP is an autosomal dominantly inherited disorder caused by mutation in the APC gene. The aim of this study was to search for germ-line mutations of the APC gene in unrelated FAP families from southern Spain. By direct sequencing of all APC gene exons, we found the mutation in 13 of 15 unrelated FAP families studied. We identified eight novel mutations: 707delA (exon6), 730_731delAG (exon7), 1787C-->G and 1946_1947insG (exon14), 2496delC, 2838_2839delAT, 2977A-->T, and 3224dupA (exon15). Two patients presented de novo germ-line mutations. Genotype-phenotype correlations for extraintestinal and extracolonic manifestations were studied. Intrafamilial phenotypic variability was observed in two families with mutations in exon/intron boundary, probably due to alternative splicing.  相似文献   

3.
Isolated methylmalonic acidemia (MMA) is a rare metabolic disease due to the deficient activity of L-methylmalonyl-CoA mutase (MCM). This mitochondrial enzyme converts L-methylmalonyl-CoA to succinyl-CoA using adenosylcobalamin (Adocbl) as cofactor. Isolated MMA is subdivided into five forms: mut MMA associated with MCM deficiency, three different defects related to mitochondrial Adocbl formation (cblA, cblB, and cblH), and cblD variant 2. We performed proteomic analysis on mitochondria from an individual with cblH/cblD disorder using 2-D DIGE to identify differentially expressed proteins in this disease. Comparative analysis of control/patient mitochondrial proteome allowed us to identify differential expression of 10 proteins. The most notable groups included proteins involved in apoptosis (cytochrome c), oxidative stress (manganese superoxide dismutase) and cell metabolism (succinyl-CoA ligase (GDP forming) and mitochondrial glycerophosphate dehydrogenase). Immunoblot analysis further validated 2-D DIGE results of two of these proteins in multiple MMA patients, suggesting that the differences in expression are a general effect in this disorder. It is feasible that the differential proteins identified in this study have a biological significance and might be related to the pathophysiology of MMA.  相似文献   

4.
BACKGROUND: Biological markers capable of predicting the risk of recurrence and the response to treatment in breast cancer are eagerly awaited. Estrogen and progesterone receptors (ER, PgR) in tumor cells mark cancers that are more likely to respond to endocrine treatment, but up to 40% of such patients do not respond. Here, the expression of a group of estrogen-regulated genes, previously identified by microarray analysis of in vitro models, was measured in breast tumors and possible associations with other clinicopathological variables were investigated. METHODS: The expression of CD24, CD44, HAT-1, BAK-1, G1P3, TIEG, NRP-1 and RXRalpha was measured by quantitative real-time RT-PCR on RNA from eighteen primary breast tumors. Statistical analyses were used to identify correlations among the eight genes and the available clinicopathological data. RESULTS: Variable expression levels of all the genes were observed in all the samples examined. Significant associations of CD24 with tumor size, CD44 with lymph node invasion, and HAT-1 and BAK-1 with ER positivity were found. The possible combinatorial value of these genes was assessed. Unsupervised hierarchical clustering analysis demonstrated that the expression profile of these genes was able to predict ER status with an acceptable approximation. CONCLUSIONS: Eight novel potential markers for breast cancer have been preliminarily characterized. As expected from in vitro data, their expression is able to discriminate ER- versus ER+ tumors.  相似文献   

5.
6.
7.
Genetic defects in the enzyme methylmalonyl CoA mutase cause a disorder of organic acid metabolism termed "mut methylmalonic acidemia." Various phenotypes of mut methylmalonic acidemia are distinguished by the presence (mut-) or absence (mut0) of residual enzyme activity. The recent cloning and sequencing of a cDNA for human methylmalonyl CoA mutase enables molecular characterization of mutations underlying mut phenotypes. We identified compound heterozygous mutations in a mut0 fibroblast cell (MAS) line by cloning the methylmalonyl CoA mutase cDNA by using the polymerase chain reaction (PCR), sequencing with internal primers, and confirming the pathogenicity of observed mutations by DNA-mediated gene transfer. Both mutations alter amino acids common to the normal human, mouse, and Propionibacterium shermanii enzymes. This analysis points to evolutionarily preserved determinants critical for enzyme structure or function. The application and limitation of cDNA cloning by PCR for the identification of mutations are discussed.  相似文献   

8.
Mutations in the gene encoding extracellular glycoprotein fibrillin-1 (FBN1) cause Marfan syndrome (MFS) and other related connective tissue disorders. In this study, eight mutations have been detected in MFS patients by heteroduplex analysis. These comprise two missense mutations, C1835Y and C2258Y in calcium-binding epidermal growth factor-like domains, two nonsense mutations, R1541X and R2394X in transforming growth factor beta1-binding protein-like domains, one splice site mutation, which has been detected previously, and three small insertions or deletions resulting in a frameshift. Fibroblast cells have been established from seven of the MFS patients and the biochemical effects of the mutations on fibrillin-1 synthesis and secretion assessed by pulse-chase analysis. Each cysteine mutation resulted in the delayed secretion of fibrillin-1 and both nonsense and frameshift mutations caused reduced levels of synthesis and/or deposition of fibrillin-1. Indirect immunofluorescence and rotary shadowing electron microscopy analysis of fibrillin microfibrils revealed no major differences between normal and patient samples. We discuss the relative merits of the biochemical techniques used in this study.  相似文献   

9.
10.
Methylmalonyl CoA mutase deficiency (methylmalonic acidemia) has been a paradigm for biochemical and somatic cell genetic approaches to human disease. Recently, genes encoding this enzyme have been cloned from several species. These studies have provided information about the primary structure and evolution of this enzyme, the mutations which underlie its deficiency state, and the structure-function determinants which are required for its activity. Gene transfer studies now permit restitution of this enzyme to genetically deficient cells and may enable somatic gene therapy to be undertaken. Molecular genetic studies not only provide more detailed information about this enzyme, but introduce new perspectives on the molecular mechanisms and dynamics of its function and raise new questions about the dyshomeostatic consequences of its deficiency.  相似文献   

11.
12.
13.
We describe the use of antisense morpholino oligonucleotides (AMOs) to restore normal splicing caused by intronic molecular defects identified in methylmalonic acidemia (MMA) and propionic acidemia (PA). The three new point mutations described in deep intronic regions increase the splicing scores of pseudoexons or generate consensus binding motifs for splicing factors, such as SRp40, which favor the intronic inclusions in MUT (r.1957ins76), PCCA (r.1284ins84), or PCCB (r.654ins72) messenger RNAs (mRNAs). Experimental confirmation that these changes are pathogenic and cause the activation of the pseudoexons was obtained by use of minigenes. AMOs were targeted to the 5′ or 3′ cryptic splice sites to block access of the splicing machinery to the pseudoexonic regions in the pre-mRNA. Using this antisense therapeutics, we have obtained correctly spliced mRNA that was effectively translated, and propionyl coenzyme A (CoA) carboxylase (PCC) or methylmalonylCoA mutase (MCM) activities were rescued in patients’ fibroblasts. The effect of AMOs was sequence and dose dependent. In the affected patient with MUT mutation, close to 100% of MCM activity, measured by incorporation of 14C-propionate, was obtained after 48 h, and correctly spliced MUT mRNA was still detected 15 d after treatment. In the PCCA-mutated and PCCB-mutated cell lines, 100% of PCC activity was measured after 72 h of AMO delivery, and the presence of biotinylated PCCA protein was detected by western blot in treated PCCA-deficient cells. Our results demonstrate that the aberrant inclusions of the intronic sequences are disease-causing mutations in these patients. These findings provide a new therapeutic strategy in these genetic disorders, potentially applicable to a large number of cases with deep intronic changes that, at the moment, remain undetected by standard mutation-detection techniques.  相似文献   

14.
Our previous studies showed that some nuclear proteins that were expressed especially during terminal differentiation of erythroid cells might interact directly or indirectly with HS2 sequence to form the HS2-protein complexes and thus play an important role in the globin gene regulation and erythroid differentiation. Monoclonal antibodies against the nuclear proteins of terminal differentiated erythroid cells, including intermediate and late erythroblasts of human fetal liver and hemin induced K562 cells, were prepared by hybridoma technique. The monoclonal antibodies were used to screen λ-gtll human cDNA expression library of fetal liver in order to obtain the relevant cDNA clones. By the analysis of their cDNA clones and the identification of the proteins' functions, the regulation mechanism of the HS2 binding proteins might be better understood. Two cDNA clones (GenBank accession number AF040247 and AF040248 respectively) were obtained and one of them owns a full length and the other encodes a prote  相似文献   

15.
Our previous studies showed that some nuclear proteins that wereexpressed especially during terminal differentiation of erythroid cells might interact directly or indirectly with HS2 sequence to form the HS2-protein complexes and thus play an important role in the globin gene regulation and erythroid differentiation. Monoclonal antibodies against the nuclear proteins of terminal differentiated erythroid cells, including intermediate and late erythroblasts of human fetal liver and hemin induced K562 cells, were prepared by hybridoma technique. The monoclonal antibodies were used to screen l-gtll human cDNA expression library of fetal liver in order to obtain the rele-vant cDNA clones. By the analysis of their cDNA clones and the identification of the proteins' func-tions, the regulation mechanism of the HS2 binding proteins might be better understood. Two cDNA clones (GenBank accession number AF040247 and AF040248 respectively) were obtained and one of them owns a full length and the other encodes a protein characterized by a leucine-zipper domain. Both of them were expressed differentially in K562 cells and hemin-induced K562 cells. The evidence suggested that both of them were involved in erythroid differentiation. We investigat-ed the expression pattern of EDRF1 and EDRF2 by RT-PCR technique. The results of RT-PCR suggested that EDRF1 and EDRF2 might play a critical role in early stage of organ development and histological differentiation. EDRF1 and EDRF2 might start the program of erythroid develop-ment, and also regulate the development of erythroid tissue and the expression of globin gene at different stage of the development.  相似文献   

16.
17.

Background  

One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes.  相似文献   

18.
Methylmalonic acidemia (MMA) can be caused by mutations in the gene coding for the methylmalonyl CoA mutase (MCM) apoenzyme or by mutations in genes required for provision of its adenosylcobalamin cofactor. We have characterized MCM activity, gene structure, and expression in a series of primary fibroblast cell lines derived from patients with MCM apoenzyme deficiency. Southern blot analysis reveals normal HindIII and TaqI polymorphisms but no gross insertions, deletions, rearrangements, or point mutations at restriction endonuclease recognition sequences. Northern blot analysis demonstrates that several cell lines have specifically decreased steady-state levels of MCM mRNA. At least six independent alleles can be delineated by a haplotype of HindIII and TaqI polymorphisms, the level of mRNA expression, and the biochemical phenotype of the cells. These studies confirm the wide phenotypic spectrum of MMA and provide molecular genetic evidence for a variety of independent alleles underlying this disorder.  相似文献   

19.
Summary We have screened seven Spanish phenylketonuric (PKU) families for the most prevalent Mediterranean and Caucasian mutations, and have subsequently found mutations P281L and IVS10. We have analyzed these two mutations in 23 of our patients. The frequencies found correspond to those of Mediterranean countries, such as Italy. This is the first report of a mutation analysis in the Spanish PKU population.  相似文献   

20.
Systematic perturbation screens provide comprehensive resources for the elucidation of cancer driver genes. The perturbation of many genes in relatively few cell lines in such functional screens necessitates the development of specialized computational tools with sufficient statistical power. Here we developed APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes) to identify genetic drivers and effectors in perturbation screens even with few samples. Applying APSiC to the shRNA screen Project DRIVE, APSiC identified well-known and novel putative mutational and amplified cancer genes across all cancer types and in specific cancer types. Additionally, APSiC discovered tumor-promoting and tumor-suppressive effectors, respectively, for individual cancer types, including genes involved in cell cycle control, Wnt/β-catenin and hippo signalling pathways. We functionally demonstrated that LRRC4B, a putative novel tumor-suppressive effector, suppresses proliferation by delaying cell cycle and modulates apoptosis in breast cancer. We demonstrate APSiC is a robust statistical framework for discovery of novel cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE using APSiC is provided as a web portal and represents a valuable resource for the discovery of novel cancer genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号