首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological theory suggests that several demographic factors influence metapopulation extinction risk, including synchrony in population size between subpopulations, metapopulation size and the magnitude of fluctuations in population size. Theoretically, each of these is influenced by the rate of migration between subpopulations. Here we report on an experiment where we manipulated migration rate within metapopulations of the freshwater zooplankton Daphnia magna to examine how migration influenced each of these demographic variables, and subsequent effects on metapopulation extinction. In addition, our experimental procedures introduced unplanned but controlled differences between metapopulations in light intensity, enabling us to examine the relative influences of environmental and demographic factors. We found that increasing migration rate increased subpopulation synchrony. We failed to detect effects of migration on population size and fluctuations in population size at the metapopulation or subpopulation level, however. In contrast, light intensity did not influence synchrony, but was positively correlated with population size and negatively correlated with population fluctuation. Finally, synchrony did not influence time to extinction, while population size and the magnitude of fluctuations did. We conclude that environmental factors had a greater influence on extinction risk than demographic factors, and that metapopulation size and fluctuation were more important to extinction risk than metapopulation synchrony.  相似文献   

2.
Mutator alleles that elevate the genomic mutation rate may invade nonrecombining populations by hitchhiking with beneficial mutations. Mutators have been repeatedly observed to take over adapting laboratory populations and have been found at high frequencies in both microbial pathogen and cancer populations in nature. Recently, we have shown that mutators are only favored by selection in sufficiently large populations and transition to being disfavored as population size decreases. This population size‐dependent sign inversion in selective effect suggests that population structure may also be an important determinant of mutation rate evolution. Although large populations may favor mutators, subdividing such populations into sufficiently small subpopulations (demes) might effectively inhibit them. On the other hand, migration between small demes that otherwise inhibit hitchhiking may promote mutator fixation in the whole metapopulation. Here, we use stochastic, agent‐based simulations and evolution experiments with the yeast Saccharomyces cerevisiae to show that mutators can, indeed, be favored by selection in subdivided metapopulations composed of small demes connected by sufficient migration. In fact, we show that population structure plays a previously unsuspected role in promoting mutator success in subdivided metapopulations when migration is rare.  相似文献   

3.
Many species exist as metapopulations in balance between local population extinction and recolonization, processes that may strongly affect the distribution of neutral genetic diversity within demes and in the metapopulation as a whole. In this paper we use both the infinite-alleles and the infinite-sites models to reframe Slatkin's propagulepool and migrant-pool models in terms of mean within-deme and among-deme genetic diversity; the infinite-sites model is particularly relevant to DNA sequence data. Population turnover causes a major reduction in neutral genetic diversity within demes, πS, and in the metapopulation as a whole, πt. This effect is particularly strong for propagulepool colonization, in which colonists are drawn from a single extant deme. Because metapopulation dynamics affect both within-deme and total metapopulation diversity similarly, comparisons between species with different ecologies on the basis of ratios such as FST are difficult to interpret and absolute measures of divergence between populations should be used as well. Although the value of FST in a metapopulation with local extinction depends strongly on the mode of colonization, this has almost no effect on the numerator of the FST ratio, πt – πS, so that FST is influenced mainly by the effect of the colonization mode on the denominator (πt). Our results also indicate that it is inappropriate to use measures of average within-deme diversity in species with population turnover to estimate the scaled mutation rate, θ, because extinction can greatly reduce πS. Finally, we discuss the effect of population turnover on the effective size of a metapopulation.  相似文献   

4.
Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, Silene latifolia, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase F ST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. F ST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.  相似文献   

5.
Variation in presumably neutral genetic markers can inform us about evolvability, historical effective population sizes and phylogeographic history of contemporary populations. We studied genetic variability in 15 microsatellite loci in six native landlocked Arctic charr (Salvelinus alpinus) populations in northern Fennoscandia, where this species is considered near threatened. We discovered that all populations were genetically highly (mean F ST ≈ 0.26) differentiated and isolated from each other. Evidence was found for historical, but not for recent population size bottlenecks. Estimates of contemporary effective population size (N e) ranged from seven to 228 and were significantly correlated with those of historical N e but not with lake size. A census size (N C) was estimated to be approximately 300 individuals in a pond (0.14 ha), which exhibited the smallest N e (i.e. N e/N C = 0.02). Genetic variability in this pond and a connected lake is severely reduced, and both genetic and empirical estimates of migration rates indicate a lack of gene flow between them. Hence, albeit currently thriving, some northern Fennoscandian populations appear to be vulnerable to further loss of genetic variability and are likely to have limited capacity to adapt if selection pressures change.  相似文献   

6.
Measurement of allele frequency shifts between temporally spaced samples has long been used for assessment of effective population size (Ne), and this ‘temporal method’ provides estimates of Ne referred to as variance effective size (NeV). We show that NeV of a local population that belongs to a sub-structured population (a metapopulation) is determined not only by genetic drift and migration rate (m), but also by the census size (Nc). The realized NeV of a local population can either increase or decrease with increasing m, depending on the relationship between Ne and Nc in isolation. This is shown by explicit mathematical expressions for the factors affecting NeV derived for an island model of migration. We verify analytical results using high-resolution computer simulations, and show that the phenomenon is not restricted to the island model migration pattern. The effect of Nc on the realized NeV of a local subpopulation is most pronounced at high migration rates. We show that Nc only affects local NeV, whereas NeV for the metapopulation as a whole, inbreeding (NeI), and linkage disequilibrium (NeLD) effective size are all independent of Nc. Our results provide a possible explanation to the large variation of Ne/Nc ratios reported in the literature, where Ne is frequently estimated by NeV. They are also important for the interpretation of empirical Ne estimates in genetic management where local NeV is often used as a substitute for inbreeding effective size, and we suggest an increased focus on metapopulation NeV as a proxy for NeI.  相似文献   

7.
Interdemic selection by the differential migration of individuals out from demes of high fitness and into demes of low fitness (Phase III) is one of the most controversial aspects of Wright's Shifting Balance Theory. I derive a relationship between Phase III migration and the interdemic selection differential, S, and show its potential effect on FST. The relationship reveals a diversifying effect of interdemic selection by Phase III migration on the genetic structure of a metapopulation. Using experimental metapopulations, I explored the effect of Phase III migration on FST by comparing the genetic variance among demes for two different patterns of migration: (1) island model migration and (2) Wright's Phase III migration. Although mean migration rates were the same, I found that the variance among demes in migration rate was significantly higher with Phase III than with island model migration. As a result, FST for the frequency of a neutral marker locus was higher with Phase III than it was with island model migration. By increasing FST, Phase III enhanced the genetic differentiation among demes for traits not subject to interdemic selection. This feature makes Wright's process different from individual selection which, by reducing effective population size, decreases the genetic variance within demes for all other traits. I discussed this finding in relation to the efficacy of Phase III and random migration for effecting peak shifts, and the contribution of genes with indirect effects to among‐deme variation.  相似文献   

8.
Stabilizing the dynamics of complex, non-linear systems is a major concern across several scientific disciplines including ecology and conservation biology. Unfortunately, most methods proposed to reduce the fluctuations in chaotic systems are not applicable to real, biological populations. This is because such methods typically require detailed knowledge of system specific parameters and the ability to manipulate them in real time; conditions often not met by most real populations. Moreover, real populations are often noisy and extinction-prone, which can sometimes render such methods ineffective. Here, we investigate a control strategy, which works by perturbing the population size, and is robust to reasonable amounts of noise and extinction probability. This strategy, called the Adaptive Limiter Control (ALC), has been previously shown to increase constancy and persistence of laboratory populations and metapopulations of Drosophila melanogaster. Here, we present a detailed numerical investigation of the effects of ALC on the fluctuations and persistence of metapopulations. We show that at high migration rates, application of ALC does not require a priori information about the population growth rates. We also show that ALC can stabilize metapopulations even when applied to as low as one-tenth of the total number of subpopulations. Moreover, ALC is effective even when the subpopulations have high extinction rates: conditions under which another control algorithm had previously failed to attain stability. Importantly, ALC not only reduces the fluctuation in metapopulation sizes, but also the global extinction probability. Finally, the method is robust to moderate levels of noise in the dynamics and the carrying capacity of the environment. These results, coupled with our earlier empirical findings, establish ALC to be a strong candidate for stabilizing real biological metapopulations.  相似文献   

9.
The genetic diversity of metapopulations is influenced not only by the effective sizes (N e ) of individual subpopulations, but also by the total effective size of the metapopulation (meta-N e ). We estimated meta-N e of four neighbouring Atlantic salmon populations connected by gene flow using genetic estimates of subpopulation N e s and migration rates derived from capture–recapture data. The meta-[^(N)]e meta{\hbox{-}}\hat{N}_{e} was lower than the sum of [^(N)]e \hat{N}_{e} s of the subpopulations, suggesting that genetic diversity harboured by the four river salmon metapopulation is lower than what would have been expected by viewing individual subpopulations separately. In addition, meta-[^(N)]e meta{\hbox{-}}\hat{N}_{e} was found to be sensitive to changes in [^(N)]e \hat{N}_{e} of the subpopulation from which net emigration rate was largest, so as that the genetic diversity of the metapopulation would be best preserved by avoiding any reductions in N e of this subpopulation. Yet, this subpopulation is the one that has historically—and still is—experiencing the highest exploitation rate in the metapopulation system.  相似文献   

10.
Microsatellite loci are widely used for investigating patterns of genetic variation within and among populations. Those patterns are in turn determined by population sizes, migration rates, and mutation rates. We provide exact expressions for the first two moments of the allele frequency distribution in a stochastic model appropriate for studying microsatellite evolution with migration, mutation, and drift under the assumption that the range of allele sizes is bounded. Using these results, we study the behavior of several measures related to Wright’s FST, including Slatkin’s RST. Our analytical approximations for FST and RST show that familiar relationships between Nem and FST or RST hold when the migration and mutation rates are small. Using the exact expressions for FST and RST, our numerical results show that, when the migration and mutation rates are large, these relationships no longer hold. Our numerical results also show that the diversity measures most closely related to FST depend on mutation rates, mutational models (stepwise versus two-phase), migration rates, and population sizes. Surprisingly, RST is relatively insensitive to the mutation rates and mutational models. The differing behaviors of RST and FST suggest that properties of the among-population distribution of allele frequencies may allow the roles of mutation and migration in producing patterns of diversity to be distinguished, a topic of continuing investigation.  相似文献   

11.
Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population‐specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate‐related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin‐wide to the metapopulation scale). Sensitivity analysis (leave‐one‐population‐out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (= 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.  相似文献   

12.
The relative yield of variable chlorophyll fluorescence (F v/F m), rate of photosynthetic carbon fixation (P), growth rate, and production of extracellular photosynthates (P ec) was studied in diatom T. weissflogii in seawater with salinity decreasing from 35 to 15 and 5‰. After incubation at 5‰ for 1 day, the diatom abundance (N) decreased as a result of death of a fraction of cells, while viable cells demonstrated decreased F v/F m and P, P ec was detectable, and cell division was likely inhibited. After incubation for 2 days, population started to grow, while exponential growth rate and the abundance by day 8 were lower compared to 35‰. After incubation at 15‰ for 1 day, P was higher and F v/F m was lower compared to 35‰. No cell death was observed and exponential growth rate insignificantly differed from that at 5‰. The value of N by day 8 was lower compared to 35‰ but higher compared to 5‰. The dependence of photosynthetic parameters and population dynamics of T. weissflogii on the relative salinity is discussed.  相似文献   

13.
The combination of two scion-one rootstock was used for two apple cultivars, ‘Pink Lady’ and ‘Qinguan’, budded on the same, one-year-old Malus hupehensis (Pamp.) Rehd. to reduce the impact of root and pot size and in order to understand the growth, water-use efficiency (WUE), and chlorophyll fluorescence characteristics. The two-scion grafted trees were planted in plastic pots under two water regimes, i.e. 70% field capacity (FC) and 55% FC. Results indicated that different scions were affected differently by drought stress. ‘Pink Lady’ had higher net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) compared with ‘Qinguan’ under both water treatments. However, ‘Qinguan’ had lower minimal fluorescence (F0), higher maximum fluorescence (Fm), and higher maximum photochemical efficiency of photosystem II (Fv/Fm) than ‘Pink Lady’ at 55% FC. Moreover, ‘Qinguan’ had larger shoot dry mass (ShDM) and higher intrinsic WUEI than ‘Pink Lady’ under both water status. Gas-exchange and growth parameters, except for P N and scion diameter, were significantly affected by the cultivar and water treatment. At 70% FC, ShDM was significantly correlated with WUEI. Moreover, WUEI was negatively linearly correlated with g s at either 70 or 55% FC. These results might indicate that ‘Pink Lady’ was more sensitive to drought than ‘Qinguan’. ‘Qinguan’ apple was able to improve WUE more than ‘Pink Lady’ under both well-watered and drought conditions. The growth parameters and photosynthetic capacity of two different scions showed that the combination of double scion-one rootstock might eliminate the influences of the rootstock and pot size.  相似文献   

14.
In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (PN), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, PN, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity.  相似文献   

15.
Landscape genetics provides a framework for pinpointing environmental features that determine the important exchange of migrants among populations. These studies usually test the significance of environmental variables on gene flow, yet ignore one fundamental driver of genetic variation in small populations, effective population size, Ne. We combined both approaches in evaluating genetic connectivity of a threatened ungulate, woodland caribou. We used least-cost paths to calculate matrices of resistance distance for landscape variables (preferred habitat, anthropogenic features and predation risk) and population-pairwise harmonic means of Ne, and correlated them with genetic distances, FST and Dc. Results showed that spatial configuration of preferred habitat and Ne were the two best predictors of genetic relationships. Additionally, controlling for the effect of Ne increased the strength of correlations of environmental variables with genetic distance, highlighting the significant underlying effect of Ne in modulating genetic drift and perceived spatial connectivity. We therefore have provided empirical support to emphasize preventing increased habitat loss and promoting population growth to ensure metapopulation viability.  相似文献   

16.
A general model is developed for predicting the genetic variance within populations and the rate of divergence of population mean phenotypes for quantitative traits under the joint operation of random sampling drift and mutation in the absence of selection. In addition to incorporating the dominance effects of mutant alleles, the model yields some insight into the effects of linkage and the mating system on the mutational production of quantitative-genetic variation. Despite these additional and potentially serious complications, it is found that, for small populations, the simple predictions obtained by previous investigators using additive-genetic models hold reasonably well. Even after accounting for dominance and linkage, the equilibrium level of genetic variance is unlikely to be much less than 2NVm or to be more than 4NVm, where N is the effective population size and Vm is the new variance from mutation appearing each generation. The rate of increase of the between-line variance per generation ultimately equals 2Vm regardless of population size, although the time to attain the asymptotic rate is proportional to N. Expressions are presented for the rate of approach to the equilibrium level of genetic variance and for the expected variance of the within-population and between-population genetic variances. The relevance of the derived model, which amounts to a generalization of the neutral theory to the phenotypic level, is discussed in the context of the detection of natural selection, the maintenance of pure lines for biomedical and agricultural purposes, the development of genetic conservation programs, and the design of indices of morphological distance between species.  相似文献   

17.
Local adaptation is a powerful mechanism to maintain genetic diversity in subdivided populations. It counteracts the homogenizing effect of gene flow because immigrants have an inferior fitness in the new habitat. This picture may be reversed in host populations where parasites influence the success of immigrating hosts. Here we report two experiments testing whether parasite abundance and genetic background influences the success of host migration among pools in a Daphnia magna metapopulation. In 22 natural populations of D. magna, immigrant hosts were found to be on average more successful when the resident populations experienced high prevalences of a local microsporidian parasite. We then determined whether this success is due to parasitism per se, or the genetic background of the parasites. In a common garden competition experiment, we found that parasites reduced the fitness of their local hosts relatively more than the fitness of allopatric host genotypes. Our experiments are consistent with theoretical predictions based on coevolutionary host-parasite models in metapopulations. A direct consequence of the observed mechanism is an elevated effective migration rate for the host in the metapopulation.  相似文献   

18.
Management of game ungulates alters population structure and habitat features, with potential effects on genetic structure. Here, we study 26 red deer (Cervus elaphus) populations in Spain. We used census data and habitat features as well as genetic information at 11 microsatellite markers from 717 individuals. We found that metapopulations presented a distribution associated with forest interruptions. Within metapopulations, fences did not have a significant effect on red deer genetic structure. The metapopulations we studied presented similar population structure, but they differed in habitat features and genetic structure. The metapopulation with higher resource availability showed a genetic structure pattern in which genetic relatedness between geographically close individuals was high while relatedness between geographically distant individuals was low. Contrarily, the metapopulation with lower resource availability presented a genetic structure pattern in which the genetic relatedness between individuals of different populations was independent of the geographic distance. We discuss the possible connection between resource availability and genetic structure. Finally, we did not find any population or environmental variable related to genetic differentiation within metapopulations.  相似文献   

19.
The effect of exogenous applied nitric oxide on photosynthesis under heat stress was investigated in rice seedlings. High temperature resulted in significant reductions of the net photosynthetic rate (P N) due to non-stomatal components. Application of nitric oxide donors, sodium nitroprusside (SNP) or S-nitrosoglutathione (GSNO), dramatically alleviated the decrease of P N induced by high temperature. Chlorophyll fluorescence measurement revealed that high temperature caused significant increase of the initial fluorescence (F o) and non-photochemical quenching (NPQ) whereas remarkable decrease of the maximal fluorescence (F m), the maximal efficiency of PSII photochemistry (F v/F m), the actual PSII efficiency (ΦPSII), and photochemical quenching (q p). In the presence of SNP or GSNO pretreatment, the increase of F o and decrease of F m, F v/F m, ΦPSII and q p were markedly mitigated, but NPQ was further elevated. Moreover, with SNP or GSNO pretreatment, H2O2 accumulation and electrolyte leakage induced by heat treatment were significantly reduced, whereas zeaxanthin content and carotenoid content relative to chlorophyll were elevated. The potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a specific NO scavenger, arrested NO donors mediated effects. These results suggest that NO can effectively protect photosynthesis from damage induced by heat stress. The activation effect of NO on photosynthesis may be mediated by acting as ROS scavenging, or/and alleviating oxidative stress via maintaining higher carotenoid content relative to chlorophyll or/and enhancing thermal dissipation of excess energy through keeping higher level of zeaxanthin content under heat stress.  相似文献   

20.
Parides ascanius (Lepidoptera: Papilionidae) is a butterfly endemic to the sand forests (“restingas”) of one of the most populated areas of Brazil (from Rio de Janeiro state to South Espírito Santo state), and was the first invertebrate officially recognized as being threatened in Brazil. Here we present a panel of eight polymorphic microsatellite loci and partial sequences of mitochondrial gene COI aiming to characterize this butterfly’s genetic diversity and understand its distribution among the extant populations. We estimate FST metrics, migration rates, cluster assignment, and spatial structure of genetic diversity. FST and statistics indicate low genetic structure and no evidence for endogamy, with all populations connected by high migration rates. Seven populations have low permanence rates (68–75 %) with increased migration probabilities for all populations. One population displays higher permanence rate (87.7 %), as the metropolitan matrix isolates it. Spatial analysis shows a global structure around the city of Rio de Janeiro and the Guanabara Bay; assignment analysis recovers six clusters evenly spread among sampled populations. These findings are consistent with a natural scenario of metapopulation dynamics for P. ascanius, with low genetic diversity and no endogamy, but progressively isolated by the metropolitan matrix. Conservation efforts should focus in connecting the isolated population, broaden the searches for new populations, and preserve all extant habitat patches where P. ascanius still occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号