首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Sophora japonica is a medium-sized deciduous native tree to China. Its flower buds and fruits have special medicinal value. By using 26 highly variable nuclear microsatellites, newly reported here, we assessed the genetic diversity and population structure of 10 representative populations (180 individuals in total) within the species. The results revealed a relatively high genetic diversity in S. japonica (Na?=?8.00, He?=?0.74, PIC?=?0.80, I?=?1.67), and reduced genetic variation and heterozygote excess were detected in landrace populations (Na?=?5.59, He?=?0.71, Ar?=?4.11, FIS?=???0.043) when compared with those semi-wild population (Na?=?9.7, He?=?0.74, Ar?=?8.80, FIS?=?0.082). A significant bottleneck was detected in two Landraces populations. Moderate differentiation and frequent gene flow were detected among all populations (FST?=?0.079, P?<?0.05, Nm?=?2.893). Mantel test detected a marginal significant pattern of isolation by distance (r?=?0.009, P?=?0.50), and strong differentiation was observed between most southern and northern populations both by the STRUCTURE clustering and principal coordinate analysis (PCoA), indicating that geographic isolation played a key role in the genetic differentiation of the species. The results from this study will benefit the breeding and conservation of S. japonica, other congener species, and tree species with similar life history traits.

  相似文献   

2.
Belonging to the genus Cenchrus with 16–22 species, Cenchrus ciliaris L. (syn. Pennisetum ciliare (L.) Link, buffelgrass) is a perennial, common in warmer regions of both hemispheres, growing as a C4 grass in a wide range of habitats. In the present study we determined chromosome number and nuclear DNA content (2C DNA) for 28 natural populations collected from northern to southern Tunisia. Three ploidy levels were found: one tetraploid population (2n?=?4x?=?36), three pentaploid (2n?=?5x?=?45), and 24 hexaploid populations (2n?=?6x?=?54). The hexaploid chromosome number has already been reported for Tunisian populations of C. ciliaris but tetraploid and pentaploid (2n?=?45) are new for this area. The tetraploid population was found in the semi-arid north; pentaploids were mostly on the northern side of the arid region, while the hexaploids were located mainly in the arid southern Tunisian and Saharan region. 2C DNA values, assessed using flow cytometry, correlated with chromosome counts. Nuclear DNA content ranged from 2C?=?3.03 to 4.61 pg, revealing three ploidy levels corresponding to 4x, 5x, 6x, and mean 2C DNA amounts were of 3.03, 3.7 and 4.48 pg, respectively. Each cytotype produced viable pollen. Flow cytometric seed screening neither proved nor disproved apomixis. The most frequent hexaploid populations seem best adapted to arid conditions in southern Tunisia. The monoploid value, 1Cx, was constant. The existence of pentaploid cytotype suggests hybridization ability between tetraploids and hexaploids. It appears that polyploidization is the major evolutionary mechanism in the speciation of C. ciliaris.  相似文献   

3.
Cattleya elongata is a rupicolous orchid species spread throughout and endemic to outcrop islands in campo rupestre vegetation of the Chapada Diamantina, northeastern Brazil. We scored nine natural populations of C. elongata for morphological and genetic variability, covering the whole distribution area of the species, using allozymes and ISSR markers and morphometric multivariate analyses. Genetic variability in allozimes was relatively high (H e?=?0.12?C0.25), and unexpectedly higher than the values based on ISSR (H e?=?0.16?C0.19). The populations present moderate structuring (allozymes, ??PT?=?0.14; ISSR, ??PT?=?0.18) and low inbreeding (allozymes, F IS?=?0.06). Genetic similarity among the populations was high in both markers, in spite of the discontinuity of the outcrops of the Chapada Diamantina. We found no particular biogeographical pattern to the distribution of the genetic and morphologic similarity among the populations of C. elongata. We found high morphological variability with moderate differentiation among the populations. We did not find any correlation among genetic, morphological, and geographical distances, and among the variability found in the morphological and genetic markers. The differences observed between the two genetic markers and the various morphological markers examined here indicated that the isolated use of any single parameter of these different populations for conservation planning or management would not consider all of the variability to be found in the species, as found in other Brazilian campos rupestres plants.  相似文献   

4.
Luo  Qianqian  Li  Fengqing  Yu  Longhua  Wang  Liyun  Xu  Gangbiao  Zhou  Zhichun 《Conservation Genetics》2022,23(1):63-74

Taxus mairei (Lemée & Lév.) S.Y. Hu ex T. S. Liu is a vulnerable tree species, and it is also a precious timber species in China. We used 13 microsatellites to assess the genetic diversity and differentiation of 665 T. mairei samples from 18 natural populations. A total of 291 alleles were detected. The average number of alleles (Na?=?22.39), expected heterozygosity (He?=?0.74), polymorphic information content (PIC?=?0.86) and Shannon diversity index (I?=?1.66) of the loci indicated a high level of genetic diversity in natural T. mairei populations. Moreover, gene flow was more active among populations (Nm?=?1.62) than within populations. Among the 18 populations, the Xinfeng population in Jiangxi Province has the highest genetic diversity. Although each of the studied populations should be protected from further deforestation and agricultural expansion, the Xinfeng population deserves the highest conservation priority. The results based on analysis of molecular variance showed that genetic variation occurred mainly within populations (84.90%; P?<?0.001), which indicated that the degree of genetic differentiation of the natural populations of T. mairei was low. Based on UPGMA, the 18 populations were categorized into two groups. A Mantel test showed that there was no significant correlation between standard genetic distance and geographical distance or altitude differences among the populations. The genetic clustering results also indicated that there are varying degrees of gene penetration among natural populations of T. mairei. The information presented here forms the basis for the development of genetic guidelines for appropriate conservation programs.

  相似文献   

5.
This study aimed to assess the population genetic structure of a widespread Neotropical tree species, Simarouba amara, at local, regional and continental spatial scales. We used five microsatellite loci to examine genetic variation in 14 natural populations (N?=?478 individuals) of this vertebrate-dispersed rain forest tree species in Panama, Ecuador, and French Guiana. Estimates of genetic differentiation (F st and R st) were significant among all but one population pair and global differentiation was moderate (F st?=?0.25, R st?=?0.33) with 94% of genetic variation ascribed to differences among three main geographic regions (Central America, Western Ecuador, Amazon basin). There was no evidence of isolation by distance within regions. Allele-size mutations contributed significantly (R ST > F ST) to the divergences between cis- and trans-Andean populations, highlighting the role of the northern Andean cordilleras as an important geographic barrier for this species.  相似文献   

6.
In this work we assessed the genetic diversity of 32 C.?calceolus populations from Poland. Mean genetic diversity was moderate (P?=?36.4%, A?=?1.58, H O?=?0.143, F IS?=?0.059), and seven geographic regions did not differ significantly in their levels of polymorphism (p?>?0.05), although allele frequencies varied greatly. Only four unique alleles were found, at three sites in southern and southeastern Poland. Genetic (P, A) and genotypic diversity parameters (G, G U) were significantly correlated with population size (p?<?0.001). In the 32 studied populations we separated 422 different multilocus genotypes; none was common to all populations. Overall population differentiation was moderate at 0.137 (p?<?0.001), but we found a significant pattern of isolation by distance for the whole dataset (r 2?=?0.65, p?<?0.001). Our chloroplast DNA (cpDNA) results suggest a single evolutionary lineage and a common origin for all Polish C.?calceolus populations. Information about the genetic health of C.?calceolus populations should be useful in developing conservation strategies.  相似文献   

7.
Endemic, obligate outcrossing plant species with narrow geographic distributions and disjunct populations are prone to loss of genetic diversity. Simultaneously, delineating clear species boundaries is important for targeted conservation efforts. The rare and endemic cactus, Sclerocactus brevihamatus subsp. tobuschii (SBT), has a parapatric relationship with Sclerocactus brevihamatus subsp. brevihamatus (SBB) but genetic distance between the two taxa is unknown. We: (1) developed taxon-specific polymorphic microsatellites, (2) assessed genetic diversity within and among nine populations of SBT, and within one population of SBB, and (3) estimated the genetic relationship between the two subspecies. Within-population genetic diversity of SBT was moderate to high (mean Ho?=?0.37; mean He?=?0.59). Indirect estimate of inbreeding corrected for null alleles (Fis-INEst) was low for SBT, ranging from 0.03 to 0.14 (mean Fis-INEst?=?0.07). Genetic differentiation among populations of SBT was low based on Fst (0.08) and AMOVA (ФPT?=?0.10). Lack of genetic and spatial correlation in SBT populations coupled with the presence of private alleles and bottleneck events in several populations suggests that reproductive isolation is occurring but that sufficient time may not have yet passed to manifest strong differentiation. Cluster analyses segregated the 10 populations into three distinct groups, and separated SBB genotypes clearly. Results suggest that while hybridization between the two subspecies may occur, SBT is clearly differentiated genetically from SBB to retain its current taxonomic status.  相似文献   

8.
Juniperus drupacea is an eastern Mediterranean mountain tree with a disjunct geographical range. We hypothesized that this disjunct occurrence (the Peloponnese in Europe and the Taurus and Lebanon Mountains in Asia) should be reflected in the patterns of genetic and morphological diversity and differentiation. Nuclear microsatellite markers (nSSR) and biometric variables of the cones and seeds were examined on material sampled from four populations in Europe and eight in Asia. The Asian populations were characterized by a higher level of genetic diversity than the European populations. The genetic differentiation among populations was moderate but significant (FST = 0.101, < 0.001). According to the clustering performed with BAPS, six genetically and geographically groups of populations were found: I and II from the Peloponnese; III from the Taurus Mountains; IV and V from the Anti‐Taurus Mountains; and VI from the Lebanon Mountains. The level of genetic differentiation among these six groups (4.30%, P = 0.012) probably reflects long‐lasting genetic isolation during the Pleistocene, as limited genetic admixture was found. In accordance with genetic analysis, the biometric investigations indicated a high level of morphological divergence between the European and Asian populations of the species, with further differentiation between the populations from the Taurus and Lebanon Mountains.  相似文献   

9.
Brandt’s vole (Lasiopodomys brandtii) distribution is discontinuous in Inner Mongolia with some populations isolated from others. Recently, some isolated populations have suffered extinction, and the factors responsible remain elusive. Genetic drift is one of the processes affecting population genetic differentiation, and can play a substantial role in the divergence of small, isolated populations. Using seven microsatellite markers, we genotyped four geographically isolated populations of Brandt’s vole, all of which exhibit episodic fluctuations in population density. The results showed a strong genetic differentiation among the geographically distinct populations (total F ST = 0.124) and in particular, one population (Zhengxiangbaiqi) was isolated from all others (F ST values were greatest between Zhengxiangbaiqi and other populations). Furthermore, high levels of inbreeding (F IS values ranged from 0.205 to 0.290) within each distinct population suggest that inbreeding has and is likely occurring in Brandt’s vole populations. These processes can decrease average individual fitness and consequently increase the risk of extinction of the species.  相似文献   

10.
Phenotypic differentiation of two tetraploid (2n = 4x = 36, 36+1B, 36+2B) populations of Santolina rosmarinifolia geographically isolated from diploid populations was investigated. The karyotype was relatively homogeneous, meiosis was regular and pollen was fertile in both cytotypes. An autopolyploid or allopolyploid origin for tetraploid cytotypes is discussed. Overall, 80.82% of all variance in achene weight, time t0, t50 and t90 of germination and accumulated germination rate was due to achene age at each ploidy level. Partition of the total phenotypic variance showed that there was extensive variation between ploidy levels. The mean of morphological characters was generally higher in polyploids. For diploid cytotypes, flower number, achene production and fruiting percentage were significantly higher than for tetraploid cytotypes. Cluster analysis indicated that the patterns of seedling morphology and development were similar in three diploid individuals and several tetraploids; the same analysis showed high similarity between diploid individuals of the natural populations, whereas tetraploid individuals showed high dissimilarity among themselves and with diploid individuals. Multiple correspondence analysis and logistic regression analysis indicated that qualitative characters contribute strongly to cytotype differentiation. The results support recognition of the tetraploid cytotypes at the subspecies level. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 650–668.  相似文献   

11.
The contemporary distribution and genetic structure of a freshwater fish provide insight into its historical geodispersal and geographical isolation following Quaternary climate changes. The short ninespine stickleback, Pungitius kaibarae, is a small gasterosteid fish occurring in freshwater systems on the Korean Peninsula and in southeast Russia. On the Korean Peninsula, P. kaibarae populations are distributed in three geographically separated regions: the NE (northeast coast), SE (southeast coast), and a limited area in the ND (Nakdong River). In this study, we used mitochondrial loci and microsatellites to investigate the evolutionary history of P. kaibarae populations by assessing their pattern of genetic structure. Our analyses revealed a marked level of divergence among three regional populations, suggesting a long history of isolation following colonization, although ND individuals showed relatively higher genetic affinity to populations from SE than those from NE. The populations from NE showed a great degree of interpopulation differentiation, whereas populations from SE exhibited only weak genetic structuring. Upon robust phylogenetic analysis, P. kaibarae formed a monophyletic group with Russian P. sinensis and P. tymensis with strong node confidence values, indicating that P. kaibarae populations on the Korean Peninsula originated from the southward migration of its ancestral lineage around the middle Pleistocene.  相似文献   

12.
Genetic variation of the globally threatened obligatorily myrmecophilous Large Blue butterfly Phengaris (Maculinea) arion (Lepidoptera) was studied, using six microsatellite markers, in a country where its decline is dramatic (Poland). Material was collected on 13 sites showing considerable ecological variation as far as biotope, larval food plant and host ants of the butterfly were concerned. Genetic variability, estimated in terms of number of alleles and heterozygosity, was the lowest in the most isolated populations. However on sites localized in areas where suitable biotopes were extensive and interconnected, P. arion still held relatively high genetic diversity. Pairwise F ST values indicated small and moderate differentiation among samples (F ST = 0.01–0.15), with the exceptions of two isolated localities (0.20). We did not find clear evidence of isolation by distance. The presence of four or five genetic clusters was indicated. Analysis of the membership of each individual to each cluster showed that the vast majority of individuals from three isolated populations were clustered in three separate genetic groups. The most distinct population was the one, which had been found to be specialized towards Myrmica lobicornis in previous studies. Individuals from the remaining populations could not be clustered in separate genetic groups, however some dominance of different clusters in geographical regions was observed. Some portion of the population’s genetic variability could be explained by geographical distribution, however the percentage of variation, explaining the differences between two main regions (S and NE Poland), was very low. We conclude that the main factor shaping the current genetic structure of P. arion in Poland is the recent isolation of populations related to habitat fragmentation but local ecological specializations may be also a potential factor. Therefore the necessity of activities aiming to halt the further reduction of genetic variability, as well as the monitoring of priority populations (e.g. those belonging to unique host races), should be emphasized in future action plans in Central Europe.  相似文献   

13.

Trailliaedoxa gracilis W. W. Smith et Forrest (Rubiaceae), a Chinese endemic monotypic genus belonging to the Alberteae (Rubiaceae), exhibits a narrow distribution in the dry valleys of the Jinsha River and Red River drainage area in southwestern China. The few sites at which T. gracilis occurs are fragmented and isolated, and several are highly vulnerable to human disturbance. As T. gracilis is a protected plant with a second-degree national priority, the genetic diversity and structure of the populations of this species should be investigated to determine the most suitable conservation strategy. In this study, two chloroplast regions and one nuclear region were used to investigate the genetic diversity, genetic structure, and demographic history of T. gracilis. We observed a high total genetic diversity (H T?=?0.952 and 0.966) and low average within-population diversity (H S?=?0.07 and 0.489) based on cpDNA and nDNA analyses. Thus, a strong genetic structure (F ST?=?0.98049 and 0.59731) was detected. A phylogeographic structure was detected by nuclear DNA analysis (N ST?>?G ST, P?<?0.05); however, the chloroplast data did not show a significant phylogeographic structure (N ST?<?G ST, P?>?0.05). The Bayesian skyline plot and isolation with migration analysis were used to estimate the demographic history of T. gracilis. The results indicated that a marked bottleneck effect occurred during the glacial-interglacial of the Pleistocene. Among the extant populations of T. gracilis, the population found in ChunJiang, LuQuan, and YuXi showed the highest haplotype diversity based on cpDNA sequences and should be given priority for protection. According to the nDNA analysis, every population presented a high level of diversity and a high content of private haplotypes. Therefore, every population should be protected.

  相似文献   

14.
The extent to which free-living microorganisms exist in geographically isolated, genetically distinct populations is a subject of continuing debate. Some authorities contend that many microorganisms have cosmopolitan distributions, while others provide evidence that more limited geographical distribution of genetically distinct populations can occur. We report the occurrence of two morphologically similar, but genetically distinct, populations of the microbial eukaryote Peridinium limbatum (Stokes) Lemmermann from neighboring Northern Wisconsin freshwater bodies. Five strains of P. limbatum were cultured by single-cell isolation from both Crystal Lake and Crystal Bog (Oneida Co., WI). Genetic variation between the two populations encompassed 8.9% (mean of 35.4 of 397 nucleotides) of the nuclear ribosomal DNA internal transcribed spacer (ITS1 and ITS2) region. In contrast, 0.5% (mean of 2.25 of 397 nucleotides) variation was observed within the Crystal Lake population and 0.3% (mean of 1.21 of 397 nucleotides), within the Crystal Bog population. This difference between the two populations was highly statistically significant (p-value << 0.001). The extent of genetic variation between the two P. limbatum populations was greater than that reported in the literature for some morphologically distinguishable microalgal species, suggesting the occurrence of cryptic sister species. On the other hand, hybrid sequences obtained from one of the Crystal Lake strains suggest that the two populations may still be members of a single sexually compatible biological species. Our data suggest that the two neighboring P. limbatum populations may be diverging genetically under conditions of limited gene flow, suggesting a mechanism for the origin of geographically isolated, genetically distinct populations of microbial eukaryotes.  相似文献   

15.
The genetic diversity and relationships of six representative cultivars and six geographically isolated wild populations of Saccharina japonica along the northwest coasts of the Pacific Ocean were investigated using AFLP markers. A total of 547 bands were generated across all samples by ten primer combinations. At the cultivar or population level, the percentage of polymorphic loci (P), gene diversity (H), and Shannon’s information index (I) was highest in Dalian population (P 59.05%; H 0.2057; I 0.3062) and lowest in Lianjiang cultivar (P 9.87%; H 0.0331; I 0.0497). At the species level, P, H, and I were 85.01%, 0.1948, and 0.3096, respectively. Unique bands were detected in all the six wild populations, with Dalian being the most. In comparison, only Yanza cultivar possessed one unique band. The G ST value was 0.6226 and the gene flow (N m ) was 0.1515, indicating strong genetic differentiation among cultivars and populations. Two UMPGA dendrograms were constructed based on the Dice similarity coefficients among individuals and on genetic distances among cultivars and populations, which generally revealed three major clades corresponding to three countries. Analysis of molecular variance revealed that a larger proportion (60.21%) of the total genetic variation was attributable to differences among cultivars and populations. The Mantel test suggested that genetic differentiation was positively correlated with geographic distance (r = 0.7962, P = 0.011) in the six wild populations, agreeing with the isolation by distance model. On the whole, low to moderate genetic diversity within cultivars and populations (except Dalian population) and high genetic differentiation among cultivars and populations were detected.  相似文献   

16.
Following glacial recession in southeast Alaska, waterfalls created by isostatic rebound have isolated numerous replicate populations of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in short coastal streams. These replicate isolated populations offer an unusual opportunity to examine factors associated with the maintenance of genetic diversity. We used eight microsatellites to examine genetic variation within and differentiation among 12 population pairs sampled from above and below these natural migration barriers. Geological evidence indicated that the above-barrier populations have been isolated for 8,000–12,500 years. Genetic differentiation among below-barrier populations (F ST = 0.10, 95% C.I. 0.08–0.12) was similar to a previous study of more southern populations of this species. Above-barrier populations were highly differentiated from adjacent below-barrier populations (mean pairwise F ST = 0.28; SD 0.18) and multiple lines of evidence were consistent with asymmetric downstream gene flow that varied among streams. Each above-barrier population had reduced within-population genetic variation when compared to the adjacent below-barrier population. Within-population genetic diversity was significantly correlated with the amount of available habitat in above-barrier sites. Increased genetic differentiation of above-barrier populations with lower genetic diversity suggests that genetic drift has been the primary cause of genetic divergence. Long-term estimates of N e based on loss of heterozygosity over the time since isolation were large (3,170; range 1,077–7,606) and established an upper limit for N e if drift were the only evolutionary process responsible for loss of genetic diversity. However, it is likely that a combination of mutation, selection, and gene flow have also contributed to the genetic diversity of above-barrier populations. Contemporary above-barrier N e estimates were much smaller than long-term N e estimates, not correlated with within-population genetic diversity, and not consistent with the amount of genetic variation retained, given the approximate 10,000-year period of isolation. The populations isolated by waterfalls in this study that occur in larger stream networks have retained substantial genetic variation, which suggests that the amount of habitat in headwater streams is an important consideration for maintaining the evolutionary potential of isolated populations.  相似文献   

17.
Endemic island plant species with a narrow distribution are often, but not always, linked to low genetic variation within populations and a lack of differentiation among populations. Cedrus brevifolia is a narrow endemic island tree species of Cyprus. Its range is restricted to a single forest, divided into five neighbouring sites. This study, using biparentally inherited nuclear microsatellites and paternally inherited plastid (chloroplast) microsatellites, assessed the genetic variation of C. brevifolia within its sole population and the level of genetic differentiation among formed sites. The results from both markers showed high diversity (nuclear H T?=?0.70; plastid H T?=?0.93), strongly suggesting that the species did not experience severe bottleneck events or extensive genetic drift. Besides, the maintenance of a high genetic diversity in C. brevifolia may suggest that it originates from a widespread congener species. Significant genetic differentiation at nuclear (G ST?=?0.052) and plastid (G ST?=?0.119) markers was found among the formed sites. Remarkably, the relatively high genetic differentiation found at plastid markers was comparable to values observed in two widespread congener cedar species. The genetic differentiation probably occurred due to fragmentation of a previously uniform population. This would lead to the shaping of different genetic groups (Bayesian analysis) and to significant population substructure. Furthermore, significant values observed for both isolation by distance and large-scale spatial genetic structure could indicate ineffective gene flow among sites and the early geographical isolation of the more isolated sites from the core population.  相似文献   

18.
Genetic drift, together with natural selection and gene flow, affects genetic variation and is the major source of changes in allele frequencies in small and isolated populations. Temporal shifts in allele frequencies at five polymorphic loci were used to estimate the amount of genetic drift in an isolated population of perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.). Here, I used the populations from the Biotest basin at Forsmark, Sweden, to investigate genetic diversity between 1977 and 2000, during which time the population can be considered to be totally isolated from other populations. Microsatellite data reveal stable levels of gene diversity over time for both species. Estimates of genetic differentiation (F ST) showed a significant divergence between 1977 and 2000 for both perch and roach. A positive correlation between genetic distance and time was found (Mantel test, perch: r = 0.724, P = 0.0112; roach: r = 0.59, P = 0.036). Estimates of effective population size (N e) differed with a factor six between two different estimators (NeEstimator and TempoFS) applying the temporal method. Ratios of N e/N ranged between 10−2 and 10−3, values normally found in marine species. Despite low N e the populations have not lost their evolutionary potential due to drift. But two decades of isolation have lead to isolation by time for populations of perch and roach, respectively.  相似文献   

19.
Populus simonii Carr. is an important ecological and commercial breeding species in northern China; however, human interference during the last few centuries has led to the reduction and fragmentation of natural populations. To evaluate genetic diversity and differentiation within and among existing populations, we used 20 microsatellite markers to examine the genetic variation and structure of 16 natural populations. Our results indicated that the level of genetic diversity differed among populations, with average number of alleles per locus (AR) and expected heterozygosity (H e) ranging from 3.7 to 6.11 and 0.589 to 0.731, respectively. A marginal population from Qilian in the Qinghai–Tibetan Plateau showed the highest values (AR?=?6.11, H e?=?0.731), and the Zhangjiakou and Yishui populations showed the lowest values (AR?=?4.08, H e?=?0.589 and AR?=?3.7, H e?=?0.604). The inbreeding coefficient (F IS) values for all populations were positive, which indicated an excess of homozygotes. The microsatellites allowed the identification of a significant subpopulation structure (K?=?3), consistent with an isolation by distance model for P. simonii populations. Additionally, molecular variance analysis revealed that 14.2 % of the variation resided among populations, and 85.8 % could be attributed to variation within populations. These data provide valuable information for natural resource conservation and for optimization of breeding programs in the immediate future.  相似文献   

20.
The majority of tetraploid peonies are allopolyploids derived from crosses between phylogenetically distinct diploid lineages. Tetraploid Paeonia obovata was previously considered to be an autopolyploid because it is morphologically indistinguishable from the diploid of the same species. The presence of the Adh2 gene in tetraploid P. obovata but the inability to amplify the Adh2 gene from Chinese diploids of P. obovata, however, suggests that the tetraploid was not an autotetraploid derivative of the geographically adjacent diploid populations in China. The Adh gene phylogenies rather suggest that the tetraploid originated from crosses between two geographical races of diploid P. obovata distributed in China and Japan. The intermediate status of tetraploid P. obovata between auto‐ and allopolyploidy highlights the need for population genetic analyses of polyploid origins along the continuous range of genomic divergence. Here we present a model that describes the probabilities of polyploid formation and establishment as a function of genomic divergence between diploid progenitors. The probability of polyploid formation (Pf) is obtained from the multiplication of the probability of production of unreduced gametes (Pg) and the probability of ‘hybridization’ (Ph). Pf stays relatively stable when the genomic divergence is low, and then decreases progressively rapidly with the increase of genomic divergence between diploid progenitors. The probability of polyploid establishment (Pe), which depends on the rate of appearance of stable beneficial gene combinations and the rate of fertility restoration, is positively correlated with the genomic divergence of diploid parents. Multiplication of Pf and Pe gives an overall probability of polyploid origins (Po) that varies continuously along the genomic divergence between diploid progenitors. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 561–571.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号