首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of Meloidogyne graminicola on growth and yield of lowland rainfed rice was assessed with and without carbofuran in a rice-wheat rotation area of northwestern Bangladesh. The experiment was conducted on farmer fields and at a research station, with experimental plots arranged in a randomized complete block design. Prior to transplanting, rice seedling height and dry weight were greater (P ≤ 0.05) and soil levels of M. graminicola were lower (P ≤ 0.05) in the treated seedbed plots compared to the nontreated control plots. Nematicide application to the field at transplanting had a greater effect (P ≤ 0.05) on mid-season plant growth than did nematicide application to the seedbed at sowing, and rice yield increased by 1.0 t/ha where carbofuran was applied to the seedbed and field-both at the research station (P ≤ 0.05) and on farmer fields (P ≤ 0.10)- compared to a nontreated control. This is the first report of a negative impact of M. graminicola on growth and yield of lowland rainfed rice in production fields in Bangladesh.  相似文献   

2.
The reproductive potential of Meloidogyne graminicola was compared with that of M. incognita on Trifolium species in greenhouse studies. Twenty-five Trifolium plant introductions, cultivars, or populations representing 23 species were evaluated for nematode reproduction and root galling 45 days after inoculation with 3,000 eggs of M. graminicola or M. incognita. Root galling and egg production by the two root-knot nematode species was similar on most of the Trifolium species. In a separate study, the effect of initial population densities (Pi) of M. graminicola and M. incognita on the growth of white clover (T. repens) was determined. Reproductive and pathogenic capabilities of M. graminicola and M. incognita on Trifolium spp. were similar. Pi levels of both root-knot nematode species as low as 125 eggs per 10-cm-d pots severely galled white clover plants after 90 days. Meloidogyne graminicola has the potential to be a major pest of Trifolium species in the southeastern United States.  相似文献   

3.
Rates of penetration of Meloidogyne incognita, M. arenaria, and M. javanica into tobacco cultivars NC2326 (susceptible to all three species) and K399 (resistant to M. incognita) and a breeding line that had been selected for resistance to M. incognita were compared. Meloidogyne incognita penetrated NC2326 rapidly during the first 24 hours after inoculation. Numbers of M. incognita continued to increase gradually through the 14-day experiment. Higher numbers of M. incognita were observed in the roots of K399 during the first 24 hours than were observed in NC2326. The number of M. incognita in K399 peaked 4 days after inoculation, then declined rapidly as the nematodes that were unable to establish a feeding site left the root or died. Numbers of M. incognita in the breeding line followed the same pattern as with K399, but in lower numbers. Numbers of M. arenaria showed little difference between cultivars until 7 days after inoculation, then numbers increased in NC2326. Numbers of M. javanica fluctuated in all cultivars, resulting in patterns of root population different from those observed for M. incognita or M. arenaria. Resistance to M. incognita appears to be expressed primarily as an inability to establish a feeding site rather than as a barrier to penetration. Some resistance to M. arenaria may also be present in K399 and the breeding line.  相似文献   

4.
Field trials with 39 soybean cultivars and five breeding lines from public and private sources were conducted from 1982 through 1985 at sites infested with Meloidogyne arenaria. Nematode population densities and root-knot galling were measured for each soybean entry. All were efficient hosts for the nematode, and average juvenile numbers in the soil increased 5-50 × from planting to harvest. Differences (P < 0.05) in galling were found among entries in each year. Centennial, Cobb, Coker 368, Hutton, and Jeff cultivars, recognized for their resistance to M. incognita, were severely galled and yielded poorly. Bedford, Forrest, A7372, Bragg, Braxton, Gordon, and Kirby, also recognized for their resistance to M. incognita, were among the least galled cultivars. Yields of all entries, however, were too low to justify their planting in sites heavily infested with M. arenaria.  相似文献   

5.
Most of the 15 carrot cultivars tested were moderate to good hosts to Meloidogyne chitwoodi race 1, whereas all except Orlando Gold were nonhosts or poor hosts for M. chitwoodi race 2. All carrot cultivars were good hosts for M. hapla. The plant weights of the carrot cultivars Red Cored Chantenay and Orlando Gold infected with either race of M. chitwoodi were significantly less than uninoculated checks in pots. Under field microplot conditions, however, detrimental effects on quality were rarely observed. M. hapla was pathogenic to both cultivars in the greenhouse and the field. The tolerance level of Orlando Gold to M. hapla was lower than Red Cored Chantenay.  相似文献   

6.
The influence of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices (Gi) and superphosphate (P) on penetration, development, and reproduction of Meloidogyne incognita (Mi) was studied on the Mi-susceptible cotton cultivar Stoneville 213 in an environmental chamber at 28 C. Plants were inoculated with Mi eggs at planting or after 28 days and destructively sampled 7, 14, 21, and 28 days after nematode inoculation. Mi penetration after 7 days was similar in all treatments at either inoculation interval. At 28 days, however, nematode numbers were least in mycorrhizal root systems and greatest in root systems grown with supplemental P. The rate of development of second-stage juveniles to ovipositing females was unaffected by Gi or P when Mi was added at planting, but was delayed in mycorrhizal root systems when Mi was added 28 days after planting. Nematode reproduction was lower in mycorrhizal than in nonmycorrhizal root systems at both Mi inoculation intervals. Nematode reproduction was stimulated by P when Mi was added at planting, but was similar to reproduction in the low P nonmycorrhizal treatment when Mi was added 28 days after planting. Eggs per female were increased by P fertility when Mi was added at planting.  相似文献   

7.
The effect of temperature on the reaction of susceptible (Canario Divex) and resistant (A 211) bean pure lines to Meloidogyne incognita was studied with soil temperature tanks housed in a growth chamber at 22 or 24 C. Soil temperature remained constant at 16, 22, 24, 26, 30, or 32 C in several trials. Bean line A 211 was resistant at 16 and 22 C but was susceptible at 24 C and above. Resistance to root-knot nematode reproduction was affected by a lower temperature (24 C) than was resistance to root galling (26 C) in A 211. Incubation of A 211 at 30 C for 3 and 16 days after inoculation with M. incognita resulted in a significant increase in nematode reproduction and root galling, respectively. The resistant reactions of A 211 to nematode reproduction and root galling were retained when inoculated plants were incubated at 21 C for a minimum of 16 and 23 days, respectively, prior to high temperature treatment.  相似文献   

8.
A series of controlled-environment experiments were conducted to elucidate the effects of Meloidogyne incognita on host physiology and plant-water relations of two cotton (Gossypium hirsutum) cultivars that differed in their susceptibility to nematode infection. Inoculation of M. incognita-resistant cultivar Auburn 634 did not affect growth, stomatal resistance, or components of plant-water potential relative to uninoculated controls. However, nematode infection of the susceptible cultivar Stoneville 506 greatly suppressed water flow through intact roots. This inhibition exceeded 28% on a root-length basis and was similar to that observed as a consequence of severe water stress in a high evaporative demand environment. Nematodes did not affect the components of leaf water potential, stomatal resistance, transpiration, or leaf temperature. However, these factors were affected by the interaction of M. incognita and water stress. Our results indicate that M. incognita infection may alter host-plant water balance and may be a significant factor in early-season stress on cotton seedlings.  相似文献   

9.
The perineal pattern of Meloidogyne graminicola is oval, characterized by the anastomosing of cuticular striae converging, and elevating at the tail terminus. A deep lateral incisure forming a low arch traverses the rounded perineal pattern of Meloidogyne hapla. Punctations at the tail region of M. hapla are not observed with the scanning electron microscope. Minute crosslines invaginate with the vulvar lips of Meloidogyne incognita. Punctate indentations around the anal opening and bordering the lateral sides of the vulvar slit of M. incognita are revealed.  相似文献   

10.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.  相似文献   

11.
Yield-loss models were developed for tobacco infected with Meloidogyne incognita grown in microplots under various irrigation regimes. The rate of relative yield loss per initial nematode density (Pi), where relative yield is a proportion of the value of the harvested leaves in uninfected plants with the same irrigation treatment, was greater under conditions of water stress or with high irrigation than at an intermediate level of soil moisture. The maximum rate of plant growth per degree-day (base 10 C) was reduced as nematode Pi increased when plots contained adequate water. When plants were under water stress, increasing Pi did not luther reduce the maximum rate of plant growth (water stress was the limiting factor). Cumulative soil matric potential values were calculated to describe the relationship between available water in the soil (matric potential) due to the irrigation treatments and subsequent plant growth.  相似文献   

12.
Solid CO₂ (dry ice) was added to pots containing soil that was infested either with eggs of the root-knot nematode, Meloidogyne incognita, or with tomato (Lycopersicon esculentum ''Rutgers'') root fragments that were infected with various stages of the nematode. Two hours after dry ice was added, thermocouples in the soil recorded temperatures ranging from -15 °C to -59 °C. One day after treatment with the dry ice, the temperature of the soil was allowed to equilibrate with that of the greenhouse, and susceptible tomato seedlings were planted in pots containing infested soil treated or untreated (controls) with dry ice. After 5 weeks, roots were removed from the pots and nematode eggs were extracted and counted. Plants grown in soil infested with eggs and receiving dry ice treatment had less than 1% of the eggs found in the controls; plants from soil infested with root fragments and receiving dry ice treatment had less than 4% of the eggs found in controls. Dry ice used to lower soil temperature may have potential as a cryonematicide.  相似文献   

13.
We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination.  相似文献   

14.
Thirty-three isolates of root-knot nematode were recovered from soil samples from rice-wheat fields in Nepal and maintained on rice cv. BR 11. The isolates were characterized using morphology, host range and DNA sequence analyses in order to ascertain their identity. Results indicated phenotypic similarity (juvenile measurements, perennial pattern, host range and gall shape) of the Nepalese isolates with Meloidogyne graminicola, with minor variations. The rice varieties LA 110 and Labelle were susceptible to all of the Nepalese isolates, but differences in the aggressiveness of the isolates were observed. Phylogenetic analyses based on the sequences of partial internal transcribed spacer (ITS) of the rRNA genes indicated that all Nepalese isolates formed a distinct clade with known isolates of M. graminicola with high bootstrap support. Furthermore, two groups were identified within the M. graminicola clade. No correlation between ITS haplotype and aggressiveness or host range was found among the tested isolates.  相似文献   

15.
The effect of previous exposure to low temperatures on freezing tolerance was determined for second-stage juveniles of Meloidogyne hapla. Juveniles in 5% polyethylene glycol 20,000 were exposed to 0-24 C for 12-96 hours, and then freezing tolerance was assessed by freezing samples at -4 C for 24 hours, thawing, and determining survival. Freezing tolerance was inversely related to prefreeze temperatures of 4-24 C. Prefreeze exposure to 4 C resulted in fourfold greater freezing tolerance than did exposure to 24 C. Mortality occurred during prefreeze exposure to 0 C. Most of the increase in freezing tolerance at 4 C occurred during the first 12 hours. In soil, prefreeze exposure to 4 C resulted in greater freezing tolerance than did prefreeze exposure to 24 C.  相似文献   

16.
Isoperoxidases were detected in resistant Rossol and susceptible Roma VF tomato roots uninfected and infected by Meloidogyne incognita. Syringaldazine, guaiacol, p-phenylenediamine-pyrocatechol (PPD-PC), and indoleacetic acid (IAA) were used as substrates, and the corresponding peroxidative activities were detected either in cytoplasmic or in cell wall fractions, except for IAA oxidase, which was measured in soluble and microsomal fractions. Isoperoxidase activities and cellular locations were induced differently in resistant and susceptible cultivars by nematodes. Nematode infestation markedly enhanced syringaldazine oxidase activity in cell walls of the resistant cultivar. This isoperoxidase is involved in the last step of lignin deposition in plants. Conversely, the susceptible cultivar reacted to M. incognita infection with an increase in cytoplasmic PPD-PC oxidase activity, which presumedly is involved in ethylene production; no changes in cell wall isoperoxidases were observed. IAA oxidase was inhibited in susceptible plants after nematode inoculation, whereas in resistant plants this activity increased in the soluble fraction and decreased in the microsomal fraction.  相似文献   

17.
Effects of soil type on the reproduction and damage potential of Meloidogyne incognita on soybean, Glycine max (L.) Merr., were determined at five locations in North Carolina, including one site where plots with six soil types were established. M. incognita reproduced readily on a susceptible soybean cultivar in most soil types, with somewhat limited reproduction in muck soils. The relationship between initial population densities and yield varied among soil types and nematode populations. Yield losses were greatest in sandy and muck soil types, with less nematode damage occurring in the clay soil types. A North Carolina and a Georgia population of M. incognita differed greatly in their ability to reproduce on soybean and suppress growth. The North Carolina population had a moderate effect on yield in 1981 and only a slight effect in 1982. In contrast, a Georgia population severely limited soybean growth and yield at lower initial population densities in 1983, Initial population densities of the nematodes and physical and chemical edaphic factors accounted for much of the variation of soybean yield and nematode reproduction.  相似文献   

18.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes.  相似文献   

19.
A range of virulence levels was found in four populations of Meloidogyne incognita collected from cotton fields of the Punjab region of Pakistan. The most virulent population was associated with development of larger gall size, larger giant cell formation and improved success of juveniles transitioning into reproducing adults. The most virulent nematode population, MI-78, emanated from cotton cultivar NIAB-78. This cotton cultivar also possessed the greatest level of resistance to the three other nematode populations evaluated in this study. The source of plant resistance was not evident during root penetration by second-stage juveniles (J2), but became apparent as nematode feeding was attempted. Although one other cotton cultivar, CIM-506, could also be designated as showing a level of resistance, none of the other cultivars reduced any nematode stage by more than 75% of that achieved on the best host. These data provide an example of a single cotton cultivar that could have short-term utility in field settings. The data also provide insight for future cotton breeding programs.  相似文献   

20.
Variability in the reproduction of the four races ofMeloidogyne incognita on the soybean cuhivars Pickett 71 and Centennial was studied in growth chamber experiments. Analysis of variance in the number of eggs produced by the races 6 weeks after the plants had been inoculated with 5,000 eggs of each race revealed that the nematode race by soybean cultivar interaction was highly significant (P = 0.001). Races 1, 3, and 4 produced from about 5,000 to 15,000 eggs per root system on Pickett 71 and only from about 300 to 600 eggs per root system on Centennial. In contrast, race 2 produced about 8,000 eggs per root system on Centennial and about 1,200 eggs per root system on Pickett 71. In a second experiment, in which the plants were inoculated with 2,000 second-stage juveniles, race 1 and race 2 produced about 13,000 and 3,000 eggs per root system, respectively, on Pickett 71 and about 600 and 10,000 eggs per root system, respectively, on Centennial. The results suggest that M. incognita resistance in soybean is race-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号