首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The commercial importance of carrageenophytes Kappaphycus and Eucheuma is well known, with much interest in terms of cultivation, marketing, and research. Considering the many lucrative prospects, these red seaweeds were introduced into various parts of the world for farming, where merely a few were comprehensively documented. Despite being extensively cultivated throughout Southeast Asia, the genetic diversity of Kappaphycus and Eucheuma is poorly studied, where heavy reliance is placed on the use of local or commercial names for identifications. This study used the mitochondrial-encoded cox1 and cox2–3 spacer genetic markers to investigate the Kappaphycus and Eucheuma haplotypes, cultivated and wild, available throughout Southeast Asia. Concatenated cox1–cox2–3 spacer datasets were also analyzed. The near full-length cox1 gene is preferred at revealing the genetic diversity of Kappaphycus and Eucheuma, provided a larger reference database is available. Both molecular markers were capable of delineating common members of the genus Kappaphycus (i.e., Kappaphycus alvarezii, Kappaphycus striatus, and Kappaphycus cottonii) and Eucheuma denticulatum, and revealed interesting genotypes and new species which may be potential alternatives to the common cultivars as well as materials for research. The relative scarcity of Eucheuma species is discussed and future sites for sampling are recommended.  相似文献   

2.
The genera Kappaphycus Doty and Eucheuma J. Agardh are important sources of carrageenan in Malaysia, offering lucrative revenues to the carrageenan industry, economy, and the local community. The extensive range of morphotypes and the lack of distinct morphological characteristics led to the application of molecular systematics in elucidating this taxonomic confusion. Local varieties of Kappaphycus and Eucheuma, identified using putative external morphology, were analyzed using the mitochondrial cox2–3 spacer and plastid RuBisCO spacer molecular markers. Phylogenetic analysis of these and non-local specimens indicate that Kappaphycus and Eucheuma are genetically distinct. Three main genotypes of Kappaphycus alvarezii were identified, of which two are extant in Hawaii. Morphological and color variations are not supported by molecular data, indicating that most of the local names are not genetically based. Both the cox2–3 spacer and RuBisCO spacer generated phylogenetic trees with similar topology except in variation of nodal supports. The two markers showed clear separation between Kappaphycus and Eucheuma and the existence of three Malaysian Kappaphycus cultivars. Cox2–3 spacer data is more variable and provides better resolution than the RuBisCO spacer, showing that Kappaphycus is more diversified with a larger number of genotypes, strains, and species which are unique to Southeast Asia. Kappaphycus sp. “Aring-aring” appeared to be phenotypically and genotypically different from other Kappaphycus congeners, whereas Kappaphycus striatum exhibited two different genotypes. Our data indicate that Eucheuma denticulatum is the dominant species in Malaysian waters and also suggested paraphyly in Eucheuma which will require further studies. The application of molecular taxonomy on Malaysian Kappaphycus and Eucheuma proves useful, offering valuable insights into the taxonomy and distribution of these commercially important Rhodophytes.  相似文献   

3.
DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.  相似文献   

4.
Cell culture technology is immensely useful in somatic hybridization, induction of mutations, cloning of specific isolates and maintenance of strains of defined genotypes. However, its application in strain improvement of some tropical red macroalgae has been limited due to the difficulty of isolating viable cells from their complex intercellular matrices. A simple, non-enzymatic technique of isolating somatic cells was developed for Kappaphycus spp. and Echeuma denticulatum. Surface-sterilized tissues (0.1 g fresh weight, 2.0 mm thick discs) from subcortical and medullary layers were treated with 3% NaOH, 3% KOH, or hydrogen peroxide in phosphate buffer solution (PBH2O2). Tissues of K. alvarezii treated with PBH2O2 softened after 5 h of treatment and completely dissociated after 12 h. Viable cell counts (VCC), determined through staining with Evan’s blue, were significantly higher (2.4 × 105 cells g?1 fresh weight tissue) in K. alvarezii (‘tambalang’ strain) treated with PBH2O2 compared with tissues treated with carrageenase from a marine bacterium.  相似文献   

5.
The systematics and taxonomy of Kappaphycus and Eucheuma (Solieriaceae) is confused and difficult due to morphological plasticity, lack of adequate characters to identify species and commercial names of convenience. These taxa are geographically widely dispersed through cultivation. Commercial, wild and herbarium sources were analysed; molecular markers provided insights into taxonomy and genetic variation, and where sources of genetic variation may be located. The mitochondrial cox2-3 and plastidal RuBisCo spacers were sequenced. There is a clear genetic distinction between K. alvarezii (“cottonii”) and K. striatum (“sacol”) samples. Kappaphycus alvarezii from Hawaii and some samples from Africa are also genetically distinct. Our data also show that all currently cultivated K. alvarezii from all over the world have a similar mitochondrial haplotype. Within Eucheuma denticulatum (“spinosum”) most African samples are again genetically distinct. Our data also suggest that currently cultivated E. denticulatum may have been “domesticated” several times, whereas this is not evident for the cultivated K. alvarezii. The present markers used do not distinguish all the morpho-types known in cultivation (e.g. var. tambalang, “giant” type) but do suggest that these markers may be useful to assess introductions and species identification in samples.  相似文献   

6.
The bacterial isolates from normal and diseased branches of Kappaphycus alvarezii and Eucheuma denticulatum in the Philippines were examined for possible role in the development of the ice-ice disease. The numbers of bacteria on and in ice-iced branches were 10–100 times greater than those from normal, healthy ones. Gram-positive bacteria predominated in almost all branch sources, but with an increasing proportion of agar-lysing bacteria in branches suffering from the ice-ice disease. These agar-lysing bacteria were composed of yellow and non-pigmented, spreading colonies identified to the Cytophaga-Flavobacterium complex and the Vibrio group. Among isolates which mainly appeared on ice-iced branches, two strains, designated as P11 (Vibrio sp.) and P25 (Cytophage sp.), which showed pathogenic activity, were obtained. These strains caused early ice-ice whitening of K. alvarezii especially when subjecting branches to environmental stress, such as reduced salinity and light intensity, suggesting that these bacteria were occasionally pathogenic. This paper offers new evidence of bacterial role in the development of so-called ice-ice disease among farmed species of Kappaphycus.  相似文献   

7.
The most common perception of unfavorable environmental factors causing the ice-ice disease in the farmed seaweeds, Kappaphycus and Eucheuma, was demonstrated in this study for the first time using stressful conditions of abiotic factors in a continuous culture system. Light intensity of less than 50 mol photon m–2 s–1 and salinity of 20% or less induced ice-ice whitening characterized by short segments at midbranches which were similar to those observed in the Philippine seaweed farms, while temperatures of up to 33–35 °C resulted in wide-scale whitening leading to complete damage of the branches. These effects were preceded by slow growth rates from an optimum of 3.7% d–1 to almost –2.0% d–1. Mechanical stress by wound injury did not result to ice-ice whitening similar to the above. Environmental factors observed to trigger ice-ice in the laboratory, although may not necessarily parallel those in the field, may act synergestically to produce similar effects.  相似文献   

8.
The carrageenophyte Kappaphycus alvarezii was introduced in 1995 and vegetatively propagated in Ubatuba, São Paulo State, Brazil, for the purpose of commercial cultivation. This species produces tetraspores mainly in the austral summer and fall. Tetraspore germination and survival were studied under different conditions of temperature, photon flux density, and photoperiod in the laboratory. Field experiments were also carried out. Although tetraspores of K. alvarezii germinated, they had low survival rates, most dying after 20 days. Recruitment of K. alvarezii tetraspores did not occur in experiments conducted in the field. The results indicated that the establishment of K. alvarezii via spore production in the natural environment of the south‐east coast of Brazil is rather remote.  相似文献   

9.
A critical reassessment of the morphological features of two closely related red algal genera, Grateloupia C. Agardh and Prionitis J. Agardh (Halymeniaceae), shows that members of the two genera share very similar reproductive (including the Grateloupia‐type auxiliary‐cell ampullae) and vegetative characters. Diagnostic features hitherto used for distinguishing these two genera, the texture of blades (lubricous to leathery in Grateloupia vs cartilaginous in Prionitis) and the position of reproductive structures (scattered over the entire blade in Grateloupia vs confined to particular portions of the blade in Prionitis), are continuous across some 75 species of both genera, thus making it difficult to draw a clear‐cut distinction between the two genera. In ribulose‐1,5‐bisphosphate carboxylase/oxygenase gene (rbcL) sequence analyses, the species of Grateloupia and Prionitis, including the two generitypes, constitute a large monophyletic clade in the Halymeniaceae. It is therefore proposed that Prionitis be included in the synonymy under Grateloupia and the appropriate combinations are proposed.  相似文献   

10.
An optimization study on concentration (viz. 0.01, 0.1, and 1.0 g L?1) and dipping time (i.e., 30 and 60 min) was conducted on three different color morphotypes (i.e., reddish brown, yellowish brown and purple) of the commercial carrageenophyte Kappaphycus alvarezii (Doty) Doty. The study tested the efficacy of Acadian Marine Plant Extract Powder (AMPEP) on the growth rate and occurrence of macro-epiphytes from August to November, representing the wet season of the Philippines. The optimum concentration and dipping time were obtained at 0.1 g L?1 and 30 min, respectively. These optimum parameters were then further verified in a commercial nursery using the yellowish brown morphotype. In another experiment, K. alvarezii (tambalang purple morphotype) and Kappaphycus striatum (Schmitz) Doty (sacol green morphotype) with, and without, AMPEP dippings were tested for their total phenolic content, free radical scavenging and iron chelating activities. Seaweed dipped in AMPEP demonstrated higher growth rates than the control. Lower concentrations (i.e., 0.01-0.1 g L?1) and shorter dipping time (e.g., 30 min) produced higher growth rates than the highest concentration (1.0 g L?1) and longer (60 min) dipping time. The presence of macro-epiphytes such as filamentous Ulva did not adversely affect the robust growth of the three color morphotypes of K. alvarezii. The lowest and highest growth rates obtained in a commercial seaweed nursery using the optimum concentration and dipping time of AMPEP were observed in July and January with 0.8% and 6.7% day?1, respectively. The antioxidant content of K. alvarezii (tambalang purple) and K. striatum (sacol green) responded differently to AMPEP dipping. The changes in total antioxidant activity followed almost the same trend as in phenolic content, in both K. alvarezii (tambalang purple) and K. striatum (sacol green), whereas, the iron chelating ability of both seaweeds with and without AMPEP dipping varied monthly. The results obtained for the use of AMPEP dips for commercial Kappaphycus cultivation demonstrated an effective management tool for improved farming protocols.  相似文献   

11.
中国野生大豆的遗传多样性和生态特异性分析   总被引:10,自引:0,他引:10  
野生大豆(Glycine soja)是栽培大豆的祖先,为东亚特有种,大部分分布在中国。我们采用52对SSR引物和10个植物学性状,以遗传丰富度和Simpson多样性指数为指标,对来自中国3个地理生态区域涉及24个省区的196份野生大豆所构成的代表性样本的遗传变异进行了研究,以期从分子水平和表型水平两个层面上揭示中国野生大豆遗传多样性和地理生态特异性。结果表明:中国野生大豆群体SSR位点的等位基因平均丰富度(NA)和平均Simpson多样性指数(H)分别为16.1和0.852,高于栽培大豆(NA=11.4,H=0.773),野生群体的遗传多样性明显高于栽培群体。3个地理生态群体中南方群体多样性最高(NA=12.9,H=0.842),黄淮海群体最低(NA=11.4,H=0.805),东北群体居中(NA=12.5,H=0.834)。群体间存在遗传分化,不同群体具有不同的特异等位基因,位点AW132402(A2连锁群)、Satt522(F)、satt150(M)、Sat_332(D1a)、Satt046(K)、sct_190(K)等的一些等位基因只在特定群体出现,表现出群体分化后的生态特异性。中国野生大豆植物学性状的群体变异丰富,平均Simpson多样性指数为0.710。地理群体间存在分化,最明显的是生育期性状的分化,反映了地理、光照和温度等生态因子的选择作用,其中南方地理群体多样性最高(H=0.671)。SSR分子标记和植物学性状所获结果相对一致,表明中国野生大豆地理群体间性状分化有其遗传分化的基础。  相似文献   

12.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

13.
Sixty‐one Hawaiian algal specimens corresponding to members of the tribe Amansieae (Amansia and Osmundaria) were compared through DNA sequence analysis. Short DNA barcode‐like sequences of mitochondrial cytochrome c oxidase subunit I (COI) and universal plastid amplicon (UPA) markers were obtained for as many of the specimens as possible, and a subset of specimens was also used for amplification and sequencing of the nuclear small‐subunit rRNA (SSU) gene for phylogenetic inference in a broader taxonomic context. Statistical parsimony analysis of the COI and UPA markers for A. glomerata produced relationships among the samples that were largely congruent with each other, although the UPA marker was more conserved. The COI marker yielded three lineages, and nucleotide divergences for these three lineages were intermediate to those typically reported for intraspecific and interspecific comparisons, suggesting that they represent either incipient species or a complex of closely related species. The COI and UPA sequences demonstrated little to no divergence for Osmundaria obtusiloba and the taxon referred to as Amansia fimbrifolia. In contrast, specimens identified as A. daemelii were identical in sequence to lineage 3 sequences of A. glomerata, and it is recommended that this taxon no longer be included in species lists for the Hawaiian flora. Phylogenetic reconstruction based on the SSU gene was largely unresolved, indicating that this marker may be of limited utility for this purpose in this group of algae, but a small amount of nucleotide variation was found for samples of A. glomerata.  相似文献   

14.
A method for generating protoplasts from the carrageenan-producingred alga Kappaphycus alvarezii was developed. Digestions withcellulase and k-carrageenase produced only a few cortical cellprotoplasts, while digestions with cellulase and i-carrageenaseonly produced epidermal cell protoplasts. When both carrageenaseswere used in the digestion media with cellulase, protoplastswere released from all cell types and yields ranged from 1·0to 1·2x107 cells g–1 with sizes from 5 to 200 µmdiameter. Protoplasts were subsequently cultured to study cellwall regeneration. Calcofluor-positive material (probably cellulose)was detected within 6 h after removal of protoplasts from thewall digestion media, whereas, i-carrageenan fragments weredetected in all regenerating protoplast cultures 24 h afterremoval from the digestion media. Protoplasts continued to produceCalcofluorpositive material and secrete carrageenan fragmentsinto culture media for several days. However, cells culturedin media augmented with K+ ions stopped secreting carrageenanfragments after 24 h. Cells cultured for 48 h in seawater labelledweakly with an i-carrageenan hybridization probe, but not atall with a corresponding k-probe. Cells cultured for 48 h, blottedto nylon membranes and probed with anti-carrageenan monoclonalantibodies, showed the presence of gelling carrageenan subunitsin the cell walls. Key words: -Carrageenan, Kappaphycus, protoplasts, Rhodophyta  相似文献   

15.
16.
Among four different genera in Galaxauraceae, species diversity of the genus Tricleocarpa Huisman & Borowitzka is underestimated and requires further examination. In this study, we explored a molecular phylogeny of Tricleocarpa with an emphasis on Taiwan species and reassessed species diversity of the genus from the Indo-Pacific region based on analyses of rbcL and COI-5P sequences and morphological observations. The molecular analyses showed that species of Tricleocarpa examined are grouped into seven clades: six clades in the T. cylindrica group (the T. cylindrica complex, T. confertus, T. jejuensis, T. natalensis and two uncharacterized T. ‘cylindrica’ clades) and one clade as the T. fragilis group. Overall, at least 12 species in Tricleocarpa were detected from the Indo-Pacific region, including a new species, T. confertus S.-L. Liu & S.-M. Lin, from Taiwan. Among them, T. confertus can be separated from other species of Tricleocarpa by a thallus consisting of dichotomous or trichotomous, articulated and moniliform branches with smooth surfaces, constrictions at nodes and slightly anti-triangular in shape. The cystocarp morphology of T. confertus is similar to the T. cylindrica group by having paraphyses intermixing with gonimoblast filaments. Recognition of this new species from other species is also supported by the DNA-based, algorithmic species delimitation approaches. With the combination of molecular phylogeny and species diversity reassessment, our phylogeographic analysis supported a trend that species in the T. fragilis group are restricted in their distribution to subtropical and tropical areas whereas species in the T. cylindrica group have a wide distribution, ranging from temperate through to tropical areas.  相似文献   

17.
We carried out a population genetic analysis of five southern African gemsbok (Oryx gazella) populations based on 530 bp of the mitochondrial control region and ten microsatellites in 75 individuals. Both markers show the high variability often observed in African bovids. Three of the populations which can be traced back to very small founding or current sizes do not show any signs of reduced variability compared to the remaining populations. The mitochondrial haplotypes form three distinct lineages which most likely originated in the Pleistocene when climate fluctuations led to periodical reduction and spreading of gemsbok habitat and which, today, are found throughout the distribution range. Bayesian microsatellite analyses yielded two groups, suggesting a more recent geographical differentiation following the admixture of the mtDNA lineages. Combining our sequences with available published data of the remaining oryx species allowed for a direct molecular comparison of O. gazella and O. beisa which have sometimes been considered a single species. The average genetic divergence between haplotypes from the two taxa was very high (39.9%), supporting their classification into two different species.  相似文献   

18.
The selection of seaweed species for their use as biofilters should be based on the knowledge of their nutrient requirements and tolerance to wide variations of nutrient concentrations. Therefore, tolerance and the physiological capabilities of Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta) to growth under nitrate, ammonium, and phosphate variations and to assimilate them into soluble proteins and photosynthetic pigments were evaluated in laboratory conditions. Treatments were composed of sterilized seawater enriched with 25 % von Stosch solution (without nitrogen and phosphorus), and nitrate or ammonium and phosphate were added in combination of 100:1 and 10:1 nitrogen/phosphorus (N/P). Nitrate concentrations varied from 0 to 500 μM, and ammonium concentrations varied from 0 to 50 μM. Growth rates of H. cervicornis increased linearly with addition of ammonium, but with nitrate addition, growth varied following a saturation kinetic, and the highest growth rate (14.45 % d?1) was observed in 200 μM of N/P ratio of 10:1. An excess of nutrients was accumulated as proteins and phycobiliproteins (mainly as allophycocyanin and phycoerythrin) at higher phosphate availability (N/P ratio of 10:1), and H. cervicornis tolerated the highest ammonium and nitrate concentrations (50 and 500 μM, respectively). These physiological responses suggest that this species could be used as biofilter for nutrient removal in eutrophicated seawater and could be cultivated in integrated multitrophic aquaculture systems.  相似文献   

19.
A new red algal genus is described, based on the southern Australian Chaetangium corneum J. Agardh. It is reproductively unique in that while the auxiliary cell is intercalary in an adventitious filament, a defining character of the order Cryptonemiales, the vegetative structure, carpogonial branches, connecting filaments and gonimoblast development seem strongly allied to lower families of the Gigartinales. Although its predominantly thallus-inward gonimoblast development is characteristic of the gigartinalian family Furcellariaceae, it is suggested that the new alga should be placed in the Nemastomataceae and that this family exhibits features which, in an ancient algal stock, could theoretically have given rise to the lower cryptonemialian and higher gigartinalian lines. The possible relationships between the Nemastomataceae, Furcellariaceae and Solieriaceae are discussed, and some seemingly primitive features of the Nemastomataceae are enumcrated.  相似文献   

20.
 Genetic variation and structure of ten wild, three domesticated and one wild-cultivated populations of pepper (Capsicum annuum) from northwestern Mexico were studied in order to find out if the domestication process has reduced the genetic variation of the modern cultivars of this species. The analysis was based on 12 polymorphic loci from nine isozymes. Wild populations were sampled in different habitats along a latitudinal gradient of ca. 500 km. All populations had high genetic variation (i.e. wild: A = 2.72, P = 90.8%, He = 0.445; wild-cultivated: A = 2.50, P = 92.3%, He = 0.461; domesticated: A = 2.60, P = 84.6%, He = 0.408), indicating little genetic erosion in modern cultivars of pepper. Genetic diversity estimated by Nei's method showed that most genetic variation is found within, rather than among populations. However, genetic differentiation is greater among cultivated (G ST=0.167) than among wild (G ST=0.056) populations. Wild populations had an average genetic identity (I) of 0.952, indicating little differentiation and high gene flow (Nm=4.21) among these populations. Average genetic identity between wild and domesticated populations was of I=0.818, revealing that the domestication process has modified the genetic composition of commercial varieties of pepper. Changes in genetic composition among commercial varieties seem to have occurred in different directions, as indicated by the average value of I = 0.817 among these populations. The high level of diversity found in wild populations of C. annuum suggests that the wild relatives of cultivated peppers are a valuable genetic resource which must be conserved. Received May 5, 1999 Accepted October 30, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号