首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The hair follicle (HF) is an important mini-organ of the skin, composed of many types of cells. Dermal papilla cells are important signalling components that guide the proliferation, upward migration and differentiation of HF stem cell progenitor cells to form other types of HF cells. Thymosin β4 (Tβ4), a major actin-sequestering protein, is involved in various cellular responses and has recently been shown to play key roles in HF growth and development. Endogenous Tβ4 can activate the mouse HF cycle transition and affect HF growth and development by promoting the migration and differentiation of HF stem cells and their progeny. In addition, exogenous Tβ4 increases the rate of hair growth in mice and promotes cashmere production by increasing the number of secondary HFs (hair follicles) in cashmere goats. However, the molecular mechanisms through which Tβ4 promotes HF growth and development have rarely been reported. Herein, we review the functions and mechanisms of Tβ4 in HF growth and development and describe the endogenous and exogenous actions of Tβ4 in HFs to provide insights into the roles of Tβ4 in HF growth and development.  相似文献   

3.
  • 1.1. Using the RT/PCR method, we examined mRNA expression of several inflammatory factors in mouse embryos during mid-late embryonal development. mRNAs of tumor necrosis factor (TNF)-α, TNF-β, their receptors (TNF-RI, TNF-RII), transforming growth factor (TGF)-β, were expressed constitutively in most of the embryonic tissues.
  • 2.2. While mRNAs of other factors, interleukin (IL)-lα, IL-1β, IL-3, IL-6, granurocytecllon] stimulating factor (G-CSF), leukaemia inhibitory factor (LIF), and interferon (IFN)-y were only limitedly expressed.
  • 3.3. The mRNAs of several complement components (C2, C3, C4, C5) and receptors (CR1, CR2) were also detected. Among them, the expression of C3 and CR1 were prominent. These results strongly support our idea that inflammation-like system play an important role to regulate embryogenesis.
  相似文献   

4.
The nervous and the immune systems share several molecules that control their development and function. We studied the temporal and spatial distribution of the immunoreactivity of two acute-phase cytokines, TNF-alpha and IL-1beta, in the developing sheep neocortex and compared it with the well-described distribution of fetuin, a fetal glycoprotein also known to modulate the production of cytokines by lipopolysaccharide (LPS)-stimulated monocytes and macrophages. TNF-alpha was present first at embryonic day 30 (E30) (term is 150 days in sheep) as a faint band of immunoreactivity between the ventricular zone and the primordial plexiform layer (preplate). IL-1beta was detected at the first appearance of the cortical plate (E35-E40). Both cytokines were present on both sides of the cortical plate, which contained fetuin-positive cells, but was free from cytokine staining. By E60, TNF-alpha immunoreactivity was less prominent than that of IL-1beta and was confined to the marginal zone and outer developing white matter; IL-1beta was present in the marginal zone and in two bands of immunoreactive cells, one at the border of the cortical plate/developing layer VI (cells of neuronal morphology) and the other at the border of layer V and the developing white matter (identified as microglia). By E80, TNF-alpha staining had disappeared and IL-1beta-immunopositive microglia were no longer detectable. By E100-E140 only a few immunoreactive cells were identified in layers V-VI; these did not co-localize with fetuin-positive cells. The differences in distribution between fetuin and the two cytokines suggest that the opsonizing role of fetuin, proposed for monocyte production of cytokines, is probably not present in the developing brain. However, early in neocortical development TNF-alpha and IL-1beta were present in the subplate zone at a time of intense synaptogenesis.  相似文献   

5.
6.
The PI3K (phosphoinositide 3-kinase) pathway is commonly activated in cancer as a consequence of inactivation of the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K signalling. In line with this important role of PTEN, mice that are heterozygous for a PTEN-null allele (PTEN+/? mice) spontaneously develop a variety of tumours in multiple organs. PTEN is a phosphatase with selectivity for PtdIns(3,4,5)P3, which is produced by the class I isoforms of PI3K (p110α, p110β, p110γ and p110δ). Previous studies indicated that PTEN-deficient cancer cell lines mainly depend on p110β, and that p110β, but not p110α, controls mouse prostate cancer development driven by PTEN loss. In the present study, we investigated whether the ubiquitously expressed p110α can also functionally interact with PTEN in cancer. Using genetic mouse models that mimic systemic administration of p110α- or p110β-selective inhibitors, we confirm that inactivation of p110β, but not p110α, inhibits prostate cancer development in PTEN+/? mice, but also find that p110α inactivation protects from glomerulonephritis, pheochromocytoma and thyroid cancer induced by PTEN loss. This indicates that p110α can modulate the impact of PTEN loss in disease and tumourigenesis. In primary and immortalized mouse fibroblast cell lines, both p110α and p110β controlled steady-state PtdIns(3,4,5)P3 levels and Akt signalling induced by heterozygous PTEN loss. In contrast, no correlation was found in primary mouse tissues between PtdIns(3,4,5)P3 levels, PI3K/PTEN genotype and cancer development. Taken together, our results from the present study show that inactivation of either p110α or p110β can counteract the impact of PTEN inactivation. The potential implications of these findings for PI3K-targeted therapy of cancer are discussed.  相似文献   

7.
8.
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α-p110 and p85α-PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α-PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.  相似文献   

9.
10.
Association with the actin cytoskeleton is critical for normal architecture and dynamics of epithelial tight junctions (TJs) and adherens junctions (AJs). Epithelial cells express β-cytoplasmic (β-CYA) and γ-cytoplasmic (γ-CYA) actins, which have different cellular localization and functions. This study elucidates the roles of cytoplasmic actins in regulating structure and remodeling of AJs and TJs in model intestinal epithelia. Immunofluorescence labeling and latrunculin B treatment reveal affiliation of dynamic β-CYA filaments with newly assembled and mature AJs, whereas an apical γ-CYA pool is composed of stable perijunctional bundles and rapidly turning-over nonjunctional filaments. The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific small interfering RNAs and cell-permeable inhibitory peptides. These experiments demonstrate unique roles of β-CYA and γ-CYA in regulating the steady-state integrity of AJs and TJs, respectively. Furthermore, β-CYA is selectively involved in establishment of apicobasal cell polarity. Both actin isoforms are essential for normal barrier function of epithelial monolayers, rapid AJ/TJ reassembly, and formation of three-dimensional cysts. Cytoplasmic actin isoforms play unique roles in regulating structure and permeability of epithelial junctions.  相似文献   

11.
Tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1β) genetic variants which resulting in TNF-α and IL-1 overproduction may increase susceptibility to autoimmune diseases such as atherosclerosis. We have studied the association of TNF-α G308A and IL-1β (+3953) C/T polymorphism with myocardial infarction in Turkish population. 143 patients with myocardial infarction and 213 age-matched healthy controls were included in the study. In univariant analysis, the frequencies of IL-1β, TNF-α genotype or allele, and haplotype of C:A and T:A were significantly elevated in patients when compared with those of controls. GA genotype of TNF-α, T allele of IL-1β and A of TNF-α allele seem to be risk factors for myocardial infarction. In contrast, CC genotype of IL-1β and GG genotype of TNF-α have protective effect against myocardial infarction. In multivariate logistic regression analysis, TNF-α A allele, gender and smoking were associated with myocardial infarction. In conclusion, we can state that TNF-α A allele might be associated with myocardial infarction.  相似文献   

12.
The 219-residue protein p25α stimulates the fibrillation of α-synuclein (αSN) in vitro and colocalizes with it in several α-synucleinopathies. Although p25α does not fibrillate by itself under native conditions in vitro, αSN-free p25α aggregates have also been observed in vivo in, for example, multiple system atrophy. To investigate which environmental conditions might trigger this aggregation, we investigated the effect of polyanionic biomolecules on p25α aggregation. Heparin, polyglutamate, arachidonic acid micelles, and RNA all induce p25α aggregation. More detailed studies using heparin as template for aggregation reveal that a minimum of 10-14 heparin monosaccharide units per heparin polymer are required. Bona fide fibrils are only formed at intermediate heparin concentrations, possibly because an excess of heparin binding sites blocks the inter-p25α contacts required for amyloid formation. Other polyanions also show an optimum for amyloid formation. Aggregation involves only modest structural changes according to both spectroscopic and proteolytic experiments. The aggregates do not seed aggregation of heparin-free p25α, suggesting that heparin is required in stoichiometric amounts to form organized structures. We are able to reproduce these observations in a model involving two levels of binding of p25α to heparin. We conclude that the modest structural changes that p25α undergoes can promote weak intermolecular contacts and that polyanions such as heparin play a central role in stabilizing these aggregates but in multiple ways, leading to different types of aggregates. This highlights the role of non-protein components in promoting protein aggregation in vivo.  相似文献   

13.
14.
MutLα is a key component of the DNA mismatch repair system in eukaryotes. The DNA mismatch repair system has several genetic stabilization functions. Of these functions, DNA mismatch repair is the major one. The loss of MutLα abolishes DNA mismatch repair, thereby predisposing humans to cancer. MutLα has an endonuclease activity that is required for DNA mismatch repair. The endonuclease activity of MutLα depends on the DQHA(X)2E(X)4E motif which is a part of the active site of the nuclease. This motif is also present in many bacterial MutL and eukaryotic MutLγ proteins, DNA mismatch repair system factors that are homologous to MutLα. Recent studies have shown that yeast MutLγ and several MutL proteins containing the DQHA(X)2E(X)4E motif possess endonuclease activities. Here, we review the endonuclease activities of MutLα and its homologs in the context of DNA mismatch repair.  相似文献   

15.
Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1.  相似文献   

16.
Although the proinflammatory cytokine interferon- (IFN-) has been generally thought to enhance antitumor immune responses and be involved in antitumor mechanisms of many other immunotherapy molecules, it has also been reported that IFN- could promote tumor immune evasion. In this report, by using an ideal mouse model that expresses IFN- locally in muscle, we demonstrate that sustained low-level expression of IFN- promotes the development of several types of tumor including H22 hepatoma, MA782/5S mammary adenocarcinoma and B16 melanoma. However, transitory expression of IFN- does not have such an effect. On the other hand, sustained high-level expression of IFN- mediates significant antitumor effect on H22 hepatoma. Low level of IFN- upregulates expression of PD-L1, PD-L2, CTLA-4 and Foxp3, which may partly account for the tumor immune evasion promoted by IFN-. Furthermore, blockade of PD-L inhibits IFN-s tumor-promoting effect. Our findings provide a mechanistic link between chronic inflammation and cancer and would have potential implications for cancer prevention and also for the design of cytokine–based cancer immunotherapy.  相似文献   

17.
Negative regulation of TGF-β signaling in development   总被引:4,自引:0,他引:4  
Chen YG  Meng AM 《Cell research》2004,14(6):441-449
The TGF-β superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-β signaling with focus on its roles in vertebrate development.  相似文献   

18.
Suzuki N  Shichiri M  Tateno T  Sato K  Hirata Y 《Peptides》2011,32(4):805-810
Salusin-α and salusin-β are multifunctional bioactive peptides that were initially predicted using in silico analyses. These peptides should be concomitantly biosynthesized from prosalusin in humans. However, little information is available yet on the biosynthesis and mode of presence of salusin-α and salusin-β in non-human species. In the present study, we examined whether salusin-α and salusin-β are conserved in the rat and whether salusin-α and salusin-β show distinct systemic distributions. Immunohistochemical analysis of rat tissues using a specific anti-rat salusin-α antibody detected immunoreactivity extensively in neuronal cells and fibers, and abundantly in the epithelial tissues throughout the organs. This distribution contrasts sharply with that of salusin-β, which is mainly localized to the neuroendocrine and hematopoietic systems. Western blot analysis of rat spleen extracts showed the presence of cleaved fragments corresponding to putative rat salusin-α. Reverse-phase and gel filtration high performance liquid chromatography analyses coupled with radioimmunoassay detection of rat urine extracts revealed a major immunoreactive component that co-eluted with synthetic putative rat salusin-β. These data support the processing of rat prosalusin into salusin-α and salusin-β despite absent dibasic amino acids between the two.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号