首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  • 1.1. Glutamate dehydrogenase flux by rat kidney mitochondria incubated with 1 mM glutamine plus 2–3 mM glutamate was stimulated by aminooxyacetate. This effect was inhibited by α-ketoglutarate.
  • 2.2. Studies with intact mitochondria and mitochondrial sonicates revealed a linear inverse relationship between glutamate deamination and α-ketoglutarate levels.
  • 3.3. The data revealed that α-ketoglutarate is a competitive inhibitor of glutamate dehydrogenase with an apparent Ki of 0.6mM.
  • 4.4. The data suggest that aminooxyacetate stimulates glutamate deamination by a mechanism mediated by α-ketoglutarate.
  相似文献   

2.
The effect of N′-nitrosonornicotine (NNN), one of the tobacco-specific nitrosamines, on the catalytic activity of glutamate dehydrogenase (GLDH) in the α-ketoglutarate amination, using reduced nicotinamide adenine dinucleotide as coenzyme, was studied by a chronoamperometric method. The maximum reaction rate of the enzyme-catalyzed reaction and the Michaelis-Menten constant, or the apparent Michaelis-Menten constant, were determined in the absence and presence of NNN. NNN remarkably inhibited the bio-catalysis activity of GLDH, and was a reversible competitive inhibitior with Ki, estimated as 199?μmol?l?1 at 25°C and pH 8.0.  相似文献   

3.
Summary NADH inhibition of bovine kidney -ketoglutarate dehydrogenase complex was compared at 10 m free Ca2+ or in the absence of Ca2+ (i.e., < 1.0 nM free Ca2+). In the presence of Ca2–, NADH inhibition was appreciably decreased for a wide range of NADH : NAD+ ratios. A half-maximal decrease in NADH inhibition occurred at slightly less than 1 m free Ca2+ (as determined with EGTA-Ca buffers). Of necessity this was observed on top of an effect of Ca2+ on the S0.5 for -ketoglutarate which was decreased by Ca2+ with a half-maximal effect at a similar concentration. The effect of Ca2+ on NADH inhibition was not observed in assays of the dihydrolipoyl dehydrogenase component (using dihydrolipoamide as a substrate) or in assays of bovine kidney pyruvate dehydrogenase complex. This indicates that the overall reaction catalyzed by the -ketoglutarate dehydrogenase complex is required to elicit the effect of Ca2+ on NADH inhibition.At a fixed -ketoglutarate concentration (50 m), removal of Ca2 reduced the activity of the -ketoglutarate dehydrogenase complex by 8,5-fold (due to an increase in S0.5 for -ketoglutarate) and, in the presence of different NADH : NAD+ ratios, decreased the activity of the complex by 50 to 100-fold. Effects of the phosphate potential (ATP/ADPxPi) or a combination of the phosphate potential and NADH :NAD+ ratio are also described. The possibility that the level of intramitochondrial free Ca2+ serves as a signal amplifier normally coupled to the energy state of mitochondria is discussed.  相似文献   

4.
We have previously shown that in the adult rat the inhibition of brain glutamate decarboxylase (GAD) activity by pyridoxal phosphate--glutamyl hydrazone (PLPGH) administration does not result in convulsions, whereas in the adult mouse intense convulsions invariably occur. In the present study we report that, surprisingly, immature rats from 2 to 20 days of age treated with PLPGH (80 mg/kg) showed generalized tonic-clonic convulsions, whereas no convulsions at all were present in 30 days-old or older rats. GAD activity, measured by enzymic determination of GABA formed in forebrain homogenates, was inhibited by about 60% at the time of convulsions in 15 days-old and younger rats, whereas the inhibition was between 40 and 50% in older animals. The addition of the coenzyme pyridoxal 5-phosphate to the incubation medium completely reversed this inhibition. In all treated animals GABA levels were lower compared to controls. The results indicate that the susceptibility of GAD in vivo to a diminished cofactor concentration decreases with age. It seems possible that changes in the expression of enzyme forms are reflected in developmental variations in the susceptibility to seizures induced by vitamin B6 depletion, but alterations of other B6-dependent biochemical pathways cannot be discarded.  相似文献   

5.
  • 1.1. Isolated mitochondria from rat liver were incubated in the presence of [U-14C]palmitate, ATP, CoA, carnitine, EGTA (ethylene glycol bis (β-aminoethyl ether) N,N′-tetraacetic acid) and varying amounts of calcium.
  • 2.2. When a KCl-based incubation medium was used, the oxidation of palmitate was inhibited when the concentration of free calcium was increased from about 0.1–10μM.
  • 3.3. When a sucrose-based incubation medium was used, the basal rate of palmitate oxidation was about half of that observed with the KCl-medium and calcium had a stimulatory effect.
  • 4.4. With the KCl-medium the rate of oxygen consumption was inhibited by calcium with α-ketoglutarate as well as palmitate as the respiratory substrate.
  • 5.5. No inhibitory effect of calcium was observed with succinate or β-hydroxybutyrate.
  • 6.6. With the KCl-medium and with α-ketoglutarate as the respiratory substrate, state 3 respiration but not state 4 respiration was inhibited by calcium.
  • 7.7. When the sucrose-medium was used, state 3 respiration was first inhibited by calcium, but this inhibition was gradually relieved and the respiratory rate finally became higher than it was before calcium addition.
  相似文献   

6.
Nerve growth factor (NGF) is synthesized in cutaneous wound tissue, and its higher levels in the neonate may contribute to more efficient wound healing. We used in situ hybridization and immunohistochemistry to define NGF mRNA and protein expression in intact skin and following excision wounding in neonatal and adult rats. To determine whether NGF is associated with wound contractile fibroblasts (myofibroblasts), we also examined expression of !-smooth muscle actin (!-SMA) mRNA and protein, established markers for these cells. In intact skin, NGF mRNA and protein were present in vascular and arrector pili smooth muscle, hair follicle sheath cells, keratinocytes, and hypodermal fibroblasts. Neonatal adipocytes and Schwann cells also expressed NGF mRNA and protein, while adult adipocytes and Schwann cells displayed only NGF-ir. Following wounding, NGF mRNA expression was exuberant in these cell types, and increased similarly at both ages and appeared de novo in skeletal muscle cells. Additionally, both NGF mRNA and protein were present in macrophages and myofibroblasts, and expression in myofibroblasts was significantly greater in neonates. Wound myofibroblasts also expressed !-SMA. Surprisingly, after wounding !-SMA mRNA and protein were present in essentially all cells in which NGF mRNA was detected. We conclude that NGF expression is enhanced in many cell types after wounding, but greater NGF synthesis in neonates appears to be due to a more robust myofibroblast response. In addition, cell types which demonstrated NGF mRNA also expressed !-SMA, and staining for both markers increased following wounding, suggesting synthesis of both proteins is regulated in a coordinated fashion.  相似文献   

7.
Perfluorooctane acid (PFOA) is classified as a persistent organic pollutant and as an endocrine disruptor. The mechanism by which PFOA causes reduced testosterone production in males is not known. We tested our hypothesis that PFOA interferes with Leydig cell steroidogenic enzymes by measuring its effect on 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) activities in rat testis microsomes and Leydig cells. The IC50s of PFOA and mode of inhibition were assayed. PFOA inhibited microsomal 3β-HSD with an IC50 of 53.2 ± 25.9 μM and 17β-HSD3 with an IC50 17.7 ± 6.8 μM. PFOA inhibited intact Leydig cell 3β-HSD with an IC50 of 146.1 ± 0.9 μM and 17β-HSD3 with an IC50 of 194.8 ± 1.0 μM. The inhibitions of 3β-HSD and 17β-HSD3 by PFOA were competitive for the substrates. In conclusion, PFOA inhibits 3β-HSD and 17β-HSD3 in rat Leydig cells.  相似文献   

8.
Lactobacillus (LB) and α-lipoic acid (ALA) were investigated to compare their protective effects against dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Animals were either injected intraperitoneally with DMN to induce hepatic fibrosis, or were left untreated (negative control). For the DMN + LB and DMN + ALA treatment groups, at two weeks of DMN treatment LB or ALA was added to the feed and supplementation continued until the experimental endpoint at sixty days. At the study endpoint, expression of IL-1β, IL-6, IL-10, TNF-α, IFN-γ, TGF-β1, COL1-α1 genes and the concentration of glutathione and malondialdehyde were measured in liver tissues, while GOT, GPT, and ALP concentrations were measured in blood. Body weights remained higher in NC and DMN + LB groups compared to DMN and DMN + ALA groups, while activity of GOT and GPT in serum was lower in DMN + LB and DMN + ALA groups compared to the DMN group. Compared to other treatment groups, in the DMN group expression of both TGF-β1 and, COL1-α1 mRNAs and pro-inflammatory cytokines increased, while that of 1L-10 decreased. Furthermore, LB and ALA treatments increased antioxidant activity of glutathione and decreased malondialdehyde in comparison to the DMN group. Between LB and ALA treatments, glutathione concentration was higher in the DMN + LB group, while malondialdehyde was lower. Our results indicate that both LB and ALA exert hepatoprotective effects against DMN-induced liver fibrosis. Their beneficial effects may be partly associated with down-regulation of both TGF-β1 and COL1-α1 signaling, which may be accounted for reduction of increased oxidative stress and TNF-α production.  相似文献   

9.
Epichlorohydrin (ECH) is used in many industrial processes. Different toxic effects of ECH were found in rodents. The metabolism of ECH was investigated before in rats using [14C]ECH. The aim of this investigation was the development of non-radioactive quantitative analytical methods for measuring two urinary metabolites of ECH, namely 3-chloro-2-hydroxypropylmercapturic acid (CHPMA) and α-chlorohydrin (α-CH). The identity of CHPMA and α-CH excreted in urine of rats treated with 5 to 35 mg/kg ECH was confirmed by GC-MS. The quantitative analysis of CHPMA, involving ethyl acetate extraction from acidified urine and subsequent methylation and analysis by gas chromatography-flame photometric detection (GC-FPD), showed a method limit of detection of 2 μg/ml. The analysis of α-CH, based on ethyl acetate extraction and subsequent analysis by GC-ECD, showed a method limit of detection of 2 μg/ml. CHPMA and α-CH derivatives could be determined quantitatively down to concentrations of 0.5 and 0.4 μg/ml urine, respectively, by selected-ion monitoring GC-MS under EI conditions. Cumulative urinary excretion of CHPMA and α-CH by rats treated with ECH were found to be 31 ± 10 and 1.4 ± 0.6% (n = 13) of the ECH dose, respectively. For CHPMA, the dose-excretion relationship suggested partially saturated ECH metabolism. For α-CH, the dose-excretion relationship was linear. With fractionated urine collection it was found that approximately 74 and 84% of the total cumulative excretion of CHPMA and α-CH, respectively, took place within the first 6 h after administration of ECH. From these investigations it is concluded that the GC-FPD and GC-ECD based methods developed are sufficiently sensitive to measure urinary excretion of CHPMA and α-CH in urine from rats administered 5 to 35 mg/kg ECH. It is anticipated that the analysis of CHPMA and α-CH based on GC-MS may be sufficiently sensitive to investigate urinary excretion from humans occupationally exposed to ECH.  相似文献   

10.
11.
Huang GJ  Huang SS  Deng JS 《PloS one》2012,7(5):e35922
Inotilone was isolated from Phellinus linteus. The anti-inflammatory effects of inotilone were studied by using lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells and λ-carrageenan (Carr)-induced hind mouse paw edema model. Inotilone was tested for its ability to reduce nitric oxide (NO) production, and the inducible nitric oxide synthase (iNOS) expression. Inotilone was tested in the inhibitor of mitogen-activated protein kinase (MAPK)?[extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), p38], and nuclear factor-κB (NF-κB), matrix-metalloproteinase (MMP)-9 protein expressions in LPS-stimulated RAW264.7 cells. When RAW264.7 macrophages were treated with inotilone together with LPS, a significant concentration-dependent inhibition of NO production was detected. Western blotting revealed that inotilone blocked the protein expression of iNOS, NF-κB, and MMP-9 in LPS-stimulated RAW264.7 macrophages, significantly. Inotilone also inhibited LPS-induced ERK, JNK, and p38 phosphorylation. In in vivo tests, inotilone decreased the paw edema at the 4(th) and the 5(th) h after Carr administration, and it increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). We also demonstrated that inotilone significantly attenuated the malondialdehyde (MDA) level in the edema paw at the 5(th) h after Carr injection. Inotilone decreased the NO and tumor necrosis factor (TNF-α) levels on serum at the 5(th) h after Carr injection. Western blotting revealed that inotilone decreased Carr-induced iNOS, cyclooxygenase-2 (COX-2), NF-κB, and MMP-9 expressions at the 5(th) h in the edema paw. An intraperitoneal (i.p.) injection treatment with inotilone diminished neutrophil infiltration into sites of inflammation, as did indomethacin (Indo). The anti-inflammatory activities of inotilone might be related to decrease the levels of MDA, iNOS, COX-2, NF-κB, and MMP-9 and increase the activities of CAT, SOD, and GPx in the paw edema through the suppression of TNF-α and NO. This study presents the potential utilization of inotilone, as a lead for the development of anti-inflammatory drugs.  相似文献   

12.
Gallic acid (GA), a natural phenolic acid, has received numerous attention because of its anti-oxidative, anti-inflammatory, and anti-cancer activity. More importantly, GA can act as an efficient inhibitor of α-Synuclein (α-Syn) aggregation at early stages. Nevertheless, some evidences suggest that GA is unlikely to cross the blood–brain barrier because of its high hydrophilicity. Hence, GA may not be considered as a promising candidate or entering brain and directly affecting the central nervous system. Accordingly, we have designed and synthesized a series of amide derivatives of GA, some of which possess appropriate lipophilicity and hydrophilicity with LogP (2.09–2.79). Meanwhile, these sheet-like conjugated compounds have good π-electron delocalization and high ability of hydrogen-bond formation. Some compounds have shown better in vitro anti-aggregation activities than GA towards α-Syn, with IC50 down to 0.98 μM. The valid modification strategy of GA is considered an efficient way to discover novel inhibitors of α-Syn aggregation.  相似文献   

13.
The role of cardiolipin acyl chain composition in assembly/stabilization of mitochondrial complexes was investigated using three yeast deletion mutants (acb1Δ strain; taz1Δ strain; and acb1Δtaz1Δ strain). Deletion of the TAZ1 gene, involved in cardiolipin acyl chain remodeling, is known to increase the content of monolyso-cardiolipin (MLCL) at the expense of CL, and to decrease the unsaturation of the remaining CL. Deletion of the ACB1 gene encoding the acyl-CoA-binding protein, involved in fatty acid elongation, decreases the average length of the CL acyl chains. Furthermore, a TAZ1ACB1 double deletion mutant strain was used in this study which has both a decrease in the length of the CL acyl chains and an increase in MLCL. BN/SDS PAGE analysis revealed that cardiolipin is important for the prohibitin–m-AAA protease complex, the α-ketoglutarate dehydrogenase complex and respiratory chain supercomplexes. The results indicate that the decreased level of complexes in taz1Δ and acb1Δtaz1Δ mitochondria is due to a decreased content of CL or the presence of MLCL.  相似文献   

14.
Diabetic nephropathy (DN) is the leading cause of death in diabetic patients and the current treatment options available have a limited significance. The insect galls of Quercus infectoria are traditionally important in the treatment of numerous diseases including diabetes. Hence, the present study was undertaken to evaluate the effect of Q. infectoria gall extract (QIGE) against experimental DN. Type 2 diabetes was induced by feeding rats with a high-fat diet (HFD) initially for 5 weeks, followed by a single intraperitoneal injection of streptozotocin (STZ, 35?mg/kg?bw/day). QIGE was administered to the rats orally at doses of 100 and 200?mg/kg?bw/day, respectively. At the end of the experimental period, various glycemic and renal function parameters were evaluated in the serum, urine and kidney tissues. The QIGE treatment significantly (p?p?via the inhibition of hyperglycemia-induced oxidative stress and renal TGF-β expression and is, therefore, a potential therapeutic agent in the treatment of diabetic complications, especially DN.  相似文献   

15.
BRL 26830 is a thermogenic-adrenoceptor agonist which stimulates lipolysis and fatty acid oxidationin vivo. It also stimulates insulin secretion, and hence promotes glucose utilisationin vivo. The effect of this agent on white and brown adipose tissue of the rat was investigated. BRL 26830 increased the rate of fatty acid synthesisin vivo in white adipose tissue by 135% but reduced the rate of fatty acid synthesisin vivo in brown adipose tissue by 78%. The increase was abolished in white adipose tissue of streptozotocin-diabetic rats, indicating that the effect involved a rise in circulating insulin levels. The reduction in fatty acid synthesis in brown adipose tissues was associated with a reduction in the activity of acetyl-CoA carboxylase in the tissue consistent with a direct-adrenoceptor-mediated effect. BRL 26830 also increased the proportion of pyruvate dehydrogenase in its active formin vivo in brown adipose tissue and this increase was abolished in streptozotocin-diabetic rats. These findings illustrate different sensitivities of white and brown adipose tissues to combined-adrenergic and insulin stimulation.  相似文献   

16.
Rice α-(di)oxygenase mediates the regio- and stereospecific oxidation of fatty acids using a persistent catalytic tyrosyl radical. Experiments conducted in the physiological O(2) concentration range, where initial hydrogen atom abstraction from the fatty acid occurs in a kinetically reversible manner, are described. Our findings indicate that O(2)-trapping of an α-carbon radical is likely to reversibly precede reduction of a 2-(R)-peroxyl radical intermediate in the first irreversible step. A mechanism of concerted proton-coupled electron transfer is proposed on the basis of natural abundance oxygen-18 kinetic isotope effects, deuterium kinetic isotope effects, and calculations at the density functional level of theory, which predict a polarized transition state in which electron transfer is advanced to a greater extent than proton transfer. The approach outlined should be useful for identifying mechanisms of concerted proton-coupled electron transfer in a variety of oxygen-utilizing enzymes.  相似文献   

17.
The ischaemic vulnerability of the heart of spontaneously hypertensive rats (SHR) is enhanced after feeding an α-linolenic acid (LNA) enriched diet. Because oxygen radical-induced reactions (e.g. lipid peroxidation) are involved in the ischaemic damage, an increased susceptibility of the SHR heart to such damaging reactions might be the reason. As a sign of the enhanced susceptibility to lipid peroxidation of LNA-fed SHR, we found (measured as TBARS) higher plasma and heart lipid peroxide levels (3.84 ± 0.50 μmol/l vs 2.98 ± 0.78 μmol/l and 507 ± 127 nmol/g prot. vs 215 ± 80 nmol/g prot., respectively) after feeding LNA. Using Fe2+/Vit. C to induce lipid peroxidation in myocardial tissue homogenates, we demonstrated the enhanced susceptibility to lipid peroxidation of the LNA-fed SHR heart (68 ± 12 nmol/min × g prot. vs 40 ± 8 nmol/min × g prot.) also in vitro. The myocardial enrichment of n-3 polyunsaturated fatty acids (PUFA) resulting in a higher peroxidation index (Pl 227 vs. 170) and the loss in myocardial activities of the antioxidative enzymes (SOD: 76 ± 24 U × 103/g prot. vs 235 ± 150 U × 103/g prot.; GSH-Px: 32 ± 5 U/g prot. vs 110 ± 30 U/g prot.) by feeding LNA could be the cause of the increase in myocardial susceptibility to lipid peroxidation of PUFA supplemented SHR.  相似文献   

18.
Spinal cord injury (SCI) often causes severe functional impairment with poor recovery. The treatment, however, is far from satisfaction, and the mechanisms remain unclear. By using proteomics and western blot, we found spinal cord transection (SCT) resulted in a significant down-regulation of α-synuclein (SNCA) in the motor cortex of SCT rats at 3 days post-operation. In order to detect the role of SNCA, we used SNCA-ORF/shRNA lentivirus to upregulate or knockdown SNCA expression. In vivo, SNCA-shRNA lentivirus injection into the cerebral cortex motor area not only inhibited SNCA expression, but also significantly enhanced neurons’ survival, and attenuated neuronal apoptosis, as well as promoted motor and sensory function recovery in hind limbs. While, overexpression SNCA exhibited the opposite effects. In vitro, cortical neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival and neurite outgrowth, while it was accompanied by reverse efficiency in SNCA-ORF group. In molecular level, SNCA silence induced the upregulation of Bcl-2 and the downregulation of Bax, and the expression of NGF, BDNF and NT3 was substantially upregulated in cortical neurons. Together, endogenous SNCA play a crucial role in motor and sensory function regulation, in which, the underlying mechanism may be linked to the regulation of apoptosis associated with apoptotic gene (Bax, Bcl2) and neurotrophic factors expression (NGF, BDNF and NT3). These finds provide novel insights to understand the role of SNCA in cerebral cortex after SCT, and it may be as a novel treatment target for SCI repair in future clinic trials.  相似文献   

19.
Polyunsaturated fatty acid (PUFA) profiles and α-tocopherol levels were studied in human plasma and whole blood incubated with copper under air or nitrogen. In plasma, both PUFAs and α-tocopherol disappeared. The results were completely different in whole blood: (i) in plasma, while α-tocopherol decreased in the same manner as in plasma incubated alone, profiles of PUFA were only slightly modified. So, in spite of the absence of α-tocopherol, lipoperoxidation was not very marked. That is why the release of a protective factor from erythrocytes during hemolysis was under consideration. This was confirmed by the complete inhibition of degradation of PUFAs in plasma when hemolysate was added; (ii) In erythrocytes, no modification in PUFA profiles could be detected while α-tocopherol decreased slightly. Thus, not only do erythrocytes resist the copper-dependent oxidative stress in an incredible manner, but they also seem to protect plasma at the time of hemolysis.  相似文献   

20.
Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors α (PPARα) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs.Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号