首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li  Ning  Yuan  Deyi  Huang  Li-Jun 《Transgenic research》2019,28(5-6):561-572

Genetic transformation of plants offers the possibility of functional characterization of individual genes and the improvement of plant traits. Development of novel transformation vectors is essential to improve plant genetic transformation technologies for various applications. Here, we present the development of a Gateway-compatible two-component expression vector system for Agrobacterium-mediated plant transformation. The expression system contains two independent plasmid vector sets, the activator vector and the reporter vector, based on the concept of the GAL4/UAS trans-activation system. The activator vector expresses a modified GAL4 protein (GAL4-VP16) under the control of specific promoter. The GAL4-VP16 protein targets the UAS in the reporter vector and subsequently activates reporter gene expression. Both the activator and reporter vectors contain the Gateway recombination cassette, which can be rapidly and efficiently replaced by any specific promoter and reporter gene of interest, to facilitate gene cloning procedures. The efficiency of the activator–reporter expression system has been assessed using agroinfiltration mediated transient expression assay in Nicotiana benthamiana and stable transgenic expression in Arabidopsis thaliana. The reporter genes were highly expressed with precise tissue-specific and subcellular localization. This Gateway-compatible two-component expression vector system will be a useful tool for advancing plant gene engineering.

  相似文献   

2.
A binary vector containing two reporter gene cassettes has been developed. This vector is ideal for optimising new plant transformation systems. Following optimisation, one of the reporter genes can be replaced with a gene of interest; the second can be used as a marker to confirm transgenic lines, and to estimate locus number and determine zygosity. This allows simple, efficient and economical screening for homozygous single-insert lines and azygous controls.  相似文献   

3.
A new potato virus X (PVX)-based viral vector for superproduction of target proteins in plants has been constructed. The triple gene block and coat protein gene of PVX were substituted by green fluorescent protein. This reduced viral vector was delivered into plant cells by agroinjection (injection of Agrobacterium tumefaciens cells, carrying viral vector cDNA within T-DNA, into plant leaves), and this approach allowed to dramatically reduce the size of the vector genome. The novel vector can be used for production of different proteins including pharmaceuticals in plants.  相似文献   

4.
Potato virus X as a vector for gene expression in plants   总被引:37,自引:0,他引:37  
The suitability of potato virus X (PVX) as a gene vector in plants was tested by analysis of two viral constructs. In the first, the GUS gene of Escherichia coli was substituted for the viral coat protein gene. In the second, GUS was added into the viral genome coupled to a duplicated copy of the viral promoter for the coat protein mRNA. The viral construct with the substituted coat protein gene accumulated poorly in inoculated protoplasts and failed to spread from the site of infection in plants. These results suggest a role for the viral coat protein in key stages of the viral infection cycle and show that gene replacement constructs are not suitable for the production of PVX-based gene vector. The construct with GUS coupled to the duplicated promoter for coat protein mRNA also accumulated less well in protoplasts than the unmodified PVX, but did infect systemically and directed high level synthesis of GUS in inoculated and systemically infected tissue. Although there was some genome instability in the PVX construct, much of the viral RNA in the systemically infected tissue had retained the foreign gene insertion, especially in infected Nicotiana clevelandii plants. These data point to a general utility of PVX as a vector for unregulated gene expression in plants.  相似文献   

5.
本文介绍国内外在利用植物病毒表达载体生产药物蛋白的研究现状,并对这一领域取得的最新突破进行重点阐述,包括Magnifection的原理、技术流程及利用其生产重组药用蛋白的优势、存在的问题等.最后,结合相关经验介绍利用植物病毒表达载体生产药物蛋白的应用前景及对该技术改进的建议.  相似文献   

6.
It is possible to replace the CaMV (cauliflower mosaic virus) ORF (open reading frame) II with foreign sequences without interfering with virus viability. Such recom-binants can induce the synthesis of substantial amounts of a foreign protein in infected plants and confer new properties to these plants. However, so far only three genes have been successfully cloned and expressed in this way. The expression mechanism of CaMV demands precise replacement of ORF II and probably certain structural features of the viral 35S RNA, which should not be disturbed by inserted sequences. Since these features are largely unknown, it cannot at present be pre-dicted whether an insert will be tolerated. It is more likely that larger inserts will disturb the viral gene expression mechanism than smaller ones.  相似文献   

7.
A new cell line, MSU-TnT4 (TnT4), was established from Trichoplusia ni embryos for use with baculovirus expression vectors and evaluated for its potential for membrane protein production. To evaluate membrane protein synthesis, recombinant baculoviruses were constructed to express the human neurotensin receptor 1 as an enhanced green fluorescent protein (GFP) fusion. TnT4 cells had a doubling time of 21 h and expressed the membrane-GFP fusion protein at approximately twice the level as Sf21 cells from the p10 promoter, as evaluated by GFP intensity. Expression of secreted alkaline phosphatase (SEAP) was similar to that of Sf21 cells. Expression of membrane-GFP fusion proteins in recombinant baculoviruses provides a rapid method for evaluating the potential of new cell lines for the production of membrane proteins using a baculovirus expression vector system (BEVS).  相似文献   

8.
High-yield expression of a viral peptide vaccine in transgenic plants   总被引:16,自引:0,他引:16  
A high-yield production of a peptide vaccine in transgenic plants is described here. A 21-mer peptide, which confers protection to dogs against challenge with virulent canine parvovirus, has been expressed in transgenic plants as an amino-terminal translational fusion with the GUS gene. Transformants were selected on the basis of their GUS activities, showing expression levels of the recombinant protein up to 3% of the total leaf soluble protein, a production yield comparable to that obtained with the same epitope expressed by chimeric plant viruses. The immunogenicity of the plant-derived peptide was demonstrated in mice immunized either intraperitoneally or orally with transgenic plant extracts, providing the suitability of the GUS fusions approach for low-cost production of peptide vaccines.  相似文献   

9.
10.
We describe a cloning and expression system which is based on the Escherichia coli T7 expression system and Gateway recombination technology. We have produced numerous destination vectors with selected fusion tags and an additional set of entry vectors containing the gene of interest and optional labeling tags. This powerful system enables us to transfer a cDNA to several expression vectors in parallel and combine them with various labeling tags. To remove the attached amino terminal tags along with the unwanted attB1 site, we inserted PreScission protease cleavage sites. In contrast to the commercially available destination vectors, our plasmids provide kanamycin resistance, which can be an advantage when expressing toxic proteins in E. coli. Some small-scale protein expression experiments are shown to demonstrate the usefulness of these novel Gateway vectors. In summary, this system has some benefits over the widely used and commercially available Gateway standard system, and it enables many different combinations for expression constructs from a single gene of interest.  相似文献   

11.
12.
13.
We constructed a novel autonomously replicating gene expression shuttle vector, with the aim of developing a system for transiently expressing proteins at levels useful for commercial production of vaccines and other proteins in plants. The vector, pRIC, is based on the mild strain of the geminivirus Bean yellow dwarf virus (BeYDV-m) and is replicationally released into plant cells from a recombinant Agrobacterium tumefaciens Ti plasmid. pRIC differs from most other geminivirus-based vectors in that the BeYDV replication-associated elements were included in cis rather than from a co-transfected plasmid, while the BeYDV capsid protein (CP) and movement protein (MP) genes were replaced by an antigen encoding transgene expression cassette derived from the non-replicating A. tumefaciens vector, pTRAc. We tested vector efficacy in Nicotiana benthamiana by comparing transient cytoplasmic expression between pRIC and pTRAc constructs encoding either enhanced green fluorescent protein (EGFP) or the subunit vaccine antigens, human papillomavirus subtype 16 (HPV-16) major CP L1 and human immunodeficiency virus subtype C p24 antigen. The pRIC constructs were amplified in planta by up to two orders of magnitude by replication, while 50% more HPV-16 L1 and three- to seven-fold more EGFP and HIV-1 p24 were expressed from pRIC than from pTRAc. Vector replication was shown to be correlated with increased protein expression. We anticipate that this new high-yielding plant expression vector will contribute towards the development of a viable plant production platform for vaccine candidates and other pharmaceuticals.  相似文献   

14.

Objective

To use a transient expression system to express a truncated human tissue plasminogen activator (K2S) gene in cucurbit plants.

Results

The recombinant tissue plasminogen activator protein (K2S form) was expressed in active form in cucurbit plants. Its molecular weight was 43 kDa. The plant-derived rt-PA was determined using goat anti-rabbit antibody by western blotting. Among the infected lines, the highest expression of rt-PA was 62 ng/100 mg per leaf tissue as measured by ELISA. The enzymatic activity of the plant-derived rt-PA was 0.8 IU/ml.

Conclusions

The K25 form of rt-PA was expressed for the first time using the viral expression system. Plant-derived rt-PA showed similar potency to commercially-available PA.
  相似文献   

15.
A versatile vector system for multiple gene expression in plants   总被引:1,自引:0,他引:1  
Today, cloning vectors that have been specifically designed to facilitate the fusion, overexpression or down-regulation of a variety of genes in plant cells are available from various sources. In most cases, their basic design allows the cloning of a single target gene, typically under a specific promoter, in parallel with the expression of selection and/or marker genes from the same vector. However, new and versatile systems now exist that expand the user's choice to a large number of promoters and terminators, and various autofluorescent tags confer the ability to express multiple genes from a single transformation vector.  相似文献   

16.
Use of viral replicons for the expression of genes in plants   总被引:3,自引:0,他引:3  
Autonomously replicating virus-based vectors have been investigated as a means of introducing heterologous genes into plants. This approach has a number of potential advantages over stable genetic transformation, particularly in terms of speed and levels of expression that can be obtained. Several groups of plant viruses, with genomes consisting of both DNA and RNA, have been investigated as possible gene vectors. In the case of DNA viruses, it has generally been possible to identify nonessential regions of the genome that can be replaced by foreign sequences. However, there appear to be limitations on the size of insert which can be tolerated. In the case of RNA viruses, replacement of viral sequences usually has a drastic effect on the viability. However, in several cases it has proved possible to substantially increase the size of the viral genome by the direct insertion of additional sequences while still retaining the ability of the viruses to multiply and spread in plants. These RNA virus-based systems appear to have the greatest potential as gene vectors.  相似文献   

17.
A system of two vectors, pEnLox and pCre, was developed. The pEnLox vector is used to induce insertional mutations, while pCre is used to obtain transgenic plants expressing the Cre recombinase gene. The T-DNA enhancer is flanked by the loxP sites in the pEnLox vector. As an Arabidopsis thaliana insertional mutant obtained by transformation with pEnLox is crossed with another transgenic line carrying the cre gene, the enhancer sequence is eliminated. The vector system makes it possible to induce insertional mutations and to determine whether the mutant phenotype is caused by the loss-of-function insertional mutation or by overespression of nearby genes in response to the enhancer contained in the insert.  相似文献   

18.
A system of two vectors, pEnLox and pCre. was developed. The pEnLox vector is used to induce insertional mutations, while pCre is used to obtain transgenic plants expressing the Cre recombinase gene. The T-DNA enhancer is flanked by the loxP sites in the pEnLox vector. As an Arahidopsis thaliana insertional mutant obtained by transformation with pEnLox is crossed with another transgenic line carrying the cre gene. the enhancer sequence is eliminated. The vector system makes it possible to induce insertional mutations and to determine whether the mutant phenotype is caused by the loss-of-function insertional mutation or by overespression of nearby genes in response to the enhancer contained in the insert.  相似文献   

19.
A major obstacle associated with recombinant protein over-expression in Escherichia coli is the production of insoluble inclusion bodies, a problem particularly pronounced with Mycobacterium tuberculosis proteins. One strategy to overcome the formation of inclusion bodies is to use an expression host that is more closely related to the organism from which the proteins are derived. Here we describe methods for efficiently identifying M. tuberculosis proteins that express in soluble form in Mycobacterium smegmatis. We have adapted the M. smegmatis expression vector pYUB1049 to the Gateway cloning system by the addition of att recombination recognition sequences. The resulting vector, designated pDESTsmg, is compatible with our in-house Gateway methods for E. coli expression. A target can be subcloned into pDESTsmg by a simple LR reaction using an entry clone generated for E. coli expression, removing the need to design new primers and re-clone target DNA. Proteins are expressed by culturing the M. smegmatis strain mc(2)4517 in autoinduction media supplemented with Tween 80. The media used are the same as those used for expression of proteins in E. coli, simplifying and reducing the cost of the switch to an alternative host. The methods have been applied to a set of M. tuberculosis proteins that form inclusion bodies when expressed in E. coli. We found that five of eight of these previously insoluble proteins become soluble when expressed in M. smegmatis, demonstrating that this is an efficient salvage strategy.  相似文献   

20.
The complete nucleotide sequence of the genome of a new potato virus X (PVX) strain Tula isolated by us has been determined. Based on comparison of the PVX Tula nucleotide sequence with the sequences of 12 other PVX strains, this strain was assigned to the European cluster of PVX strains. Phylogenetic analysis revealed the same phylogeny for both full genome sequences and nucleotide sequences of polymerase and coat protein genes, suggesting that the PVX evolution did not involve recombination between different strains. The full-size cDNA copy of the PVX Tula genome was cloned and the accumulation of the viral coat protein in infected Nicotiana benthamiana was shown to be about twofold higher than for the PVX strain UK3. Based on the PVX Tula genome, a new vector which contained the target gene instead of the removed triple transport gene block and the coat protein gene has been constructed for expression of target proteins in plants. The productivity of the new vector was about 1.5-2-fold higher than the productivity of the vector of the same structure based on the standard PVX strain genome. The new viral vector can be used for superproduction of recombinant proteins in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号