首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slices of rat aorta were incubated in Krebs-Ringer bicarbonate buffer for measurements of immunoreactive 6-ketoprostaglandin F1 alpha, thromboxane (TX) B2, prostaglandin (PG)E2, and PGF2 alpha, and in Tris buffer (pH 9.3) for determination of prostacyclin (PGI2)-like activity. No significant generation of TXB2, PGE2, or PGF2 alpha by rat aortic tissue could be detected. The time-dependent release of 6-keto-PGF1 alpha Krebs-Ringer bicarbonate buffer closely correlated with PGI2 generation in alkaline Tris buffer. During a 30-min incubation period, 6-keto-PGF1 alpha, release was 79.8 +/- 3.3 pmol/mg at a buffer potassium concentration of 3.9 mmol/liter and significantly increased by 23% to 98.3 +/- 8.5 pmol/mg (P less than 0.025) in the absence of potassium in the incubation medium. A smaller decrease in buffer potassium concentration to 2.1 mmol/liter and an increase to 8.8 mmol/liter did not significantly alter aortic 6-keto-PGF1 alpha release. Changes in the incubation buffer sodium concentration from 144 mmol/liter to either 138 or 150 mmol/liter at a constant potassium concentration of 3.9 mmol/liter did not alter the recovery of 6-keto-PGF1 alpha. Our results support the concept that PGI2 is the predominant product of arachidonic acid metabolism in rat aorta. They further show that PGI2 can be recovered quantitatively as 6-keto-PGF1 alpha under the present in vitro conditions. In addition, this in vitro study points to the potassium ion as a modulator of vascular PGI2 synthesis with a stimulation at low potassium concentrations.  相似文献   

2.
The role of arachidonic acid in rat heart cell metabolism   总被引:4,自引:0,他引:4  
Although it is known that arachidonic acid accumulates in the ischemic myocardium and that cardiac prostaglandin formation from the precursor arachidonic acid is altered during disease states, the role of arachidonic acid in the myocyte itself is not yet clear. Using isolated Ca-tolerant adult rat heart muscle cells, we were able to study cardiac metabolism of arachidonic acid without the effects induced by endothelial or other non-muscle tissue. Myocytes rapidly incorporate arachidonic acid as well as other fatty acids into their lipid pools, the predominant acceptor being the triacylglycerols at an extracellular fatty acid concentration of 20 microM. As exogenous arachidonic acid is decreased, the distribution pattern shifts to favor phospholipid esterification. Cardiocyte prostaglandin production from arachidonic acid added to the incubation medium was limited (less than 1% conversion of added arachidonic acid) and lipoxygenase pathway activity was not detected. Oxidation rates of arachidonic acid were 3-fold lower than for palmitic acid, indicating that it is of secondary importance in energy-yielding reactions. Our results suggest that arachidonic acid serves primarily as a structural component of myocardial membranes and that its release during ischemia would permit its use as a substrate for prostaglandin production by coronary vascular tissue.  相似文献   

3.
Isotope-labelled arachidonic acid has been used to study in vitro formation of prostaglandins and other products in mammalian tissue. Quantitative conclusions about cyclooxygenase activity have been drawn from such studies. However, arachidonic acid is present in all tissues, free and esterified, and therefore it can be expected that endogenous arachidonate would interfere with transformation of the radioactive exogenous substrate. (1-14C)-labelled arachidonate was, therefore, incubated with homogenates of various human tissues (amnion, chrorion, placenta and myometrium), and the two molecular forms, 12C and 14C, of arachidonic acid as well as of prostaglandin E2 and prostaglandin F2 alpha were quantitated, before and after 30 min of incubation, using gas chromatography-mass spectrometry with multiple ion detection. The results demonstrate a substantial release of arachidonic acid into the medium during incubation. There was no correlation between either the initial concentration of [12C]arachidonic acid and initial concentration of [12C]prostaglandin E2 or the percent increase of those compounds during incubation. The net formation of [12C]prostaglandin E2 and [14C]prostaglandin E2 from endogenous and exogenous precursor, respectively, were also very different. The study shows that by simply incubating (1-14C)-labelled arachidonic acid in tissue homogenates and measuring the amount of radioactivity transformed into various prostaglandins only qualitative conclusions can be drawn.  相似文献   

4.
Myofibroblasts were cultured successfully from experimental wound tissue in rat palatal mucoperiosteum. Arachidonic acid metabolizing activity in cultured myofibroblasts was compared with that in fibroblasts cultured from normal mucoperiosteum. Prostaglandins biosynthesized from [14C]arachidonic acid in cell-free homogenates of both myofibroblasts and fibroblasts were prostaglandins D2, E2 and F2 alpha, and the activity producing each prostaglandin was not significantly different between the myofibroblasts and the fibroblasts, whereas smooth muscle cells, which are histologically similar to myofibroblasts, produced mainly 6-ketoprostaglandin F1 alpha, and relatively small amounts of prostaglandin E2. The release of arachidonic acid from cells prelabeled with [14C]arachidonic acid was compared among three types of cell. The calcium ionophore A23187 strongly enhanced arachidonic acid release in all three cell types. Bradykinin, 5-hydroxytryptamine and prostaglandin F2 alpha affected the stimulation of arachidonic acid release in the fibroblasts but were less or not effective in the myofibroblasts and smooth muscle cells. In addition, prostaglandin E2 biosynthesized in response to several stimuli was measured by radioimmunoassay. The content of prostaglandin E2 correlated closely with arachidonic acid release. In this study, we showed homogeneity between the myofibroblasts and fibroblasts in prostaglandin synthesizing activity and similarity in response to various stimuli between the myofibroblasts and smooth muscle cells, from the standpoint of arachidonic acid metabolism.  相似文献   

5.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

6.
We have studied the effects on bone of three structurally dissimilar non-steroidal anti-inflammatory drugs which inhibit prostaglandin cyclo-oxygenase activity (PGH synthase); indomethacin, flurbiprofen, and piroxicam. We used cultures of half calvaria from neonatal or fetal rats to measure effects on PGE2 production, measured by radioimmunoassay. In four day neonatal rat calvaria, indomethacin inhibited PGE2 release into the medium by 80% at 10(-8) M, while flurbiprofen and piroxicam produced similar inhibition at 10(-6) M. However, at 10(-10) M, treatment with all three compounds resulted in an increase in medium PGE2 concentration of 60 to 120%. To assess the mechanism of this effect, bones were labeled with [3H]-arachidonic acid, washed and cultured in the presence or absence of piroxicam. At 10(-6) M, piroxicam inhibited production of cyclo-oxygenase products and arachidonic acid release. However, at 10(-10) M, there was a substantial increase in labeled products, particularly PGE2, despite a further decrease in arachidonic acid release. In 21 day fetal rat cultures, flurbiprofen was found to increase PGE2 release both in control cultures and cultures which had been incubated with cortisol (10(-8) M) to reduce endogenous arachidonic acid release and supplied with exogenous arachidonic acid (10(-5) M) to provide a substrate. These results indicate that three potent inhibitors of PGH synthase can, paradoxically, increase prostaglandin production at low concentrations. The effect does not appear to be due to increased arachidonic acid release, and could be due to increased PGH synthase activity.  相似文献   

7.
Prostaglandin E release rates from isolated strips of guinea-pig taenia coli increased during exposure to zero K+ bathing fluid, from control values of 0.78 +/- 0.11 ng/g per min to levels as high as 29.2 ng/per min. Release rates increased for 40-50 min and then remained constant or fell despite progressive increases in intracellular sodium [Nai+] or fall in intracellular potassium [Ki+]. Readmittance of K+ to the bathing solution resulted in rapid reversal of elevated prostaglandin E release rates. [Nai+] and [Ki+] were markedly more abnormal in strips exposed to zero K+ for 70-201 min compared to 30-min exposures. Upon the readdition of K+ after long zero K+ exposure, the rate of prostaglandin E release fell long before [Nai+] and [Ki+] returned to control levels. After K+ was readded to the bathing solution, the ion concentration of tissues exposed to zero K+ for 30 min returned to normal much more quickly than did those of tissues exposed for the longer time periods, yet the exponential rate constants for fall of prostaglandin E release rate after K+ was added were not significantly different after short or long zero K+ exposure. Thus there was a dissociation between the return of [Nai+] and [Ki+] and the fall of prostaglandin E release rate to control levels. Ouabain augmented prostaglandin E release under conditions where [Ki+] could not fall. Addition of known neurotransmitters present in this tissue to the bathing fluid did not augment prostaglandin E release. Guinea-pig taenia coli strips that had been incubated with [3H]arachidonic acid, constantly released [3H]arachidonic acid and [3H]prostaglandin E and a prostaglandin which cochromatographed with prostaglandin E but could not be converted to prostaglandin B by alkali and was shown to be 6-ketoprostaglandin F1 alpha. Release of [3H]arachidonic acid and [3H]prostaglandin E plus 6-[3H]ketoprostaglandin F1 alpha was increased when strips were exposed to zero K+. Data obtained in this study suggest the augmented prostaglandin E release seen during zero K+ or ouabain is related to increased availability of unbound arachidonic acid at the site of cyclooxygenase in the cell. Augmented prostaglandin E release is apparently not related to alterations in intracellular electrolyte concentrations or release of known neurotransmitters.  相似文献   

8.
Fresh arterial tissue generates an unstable substance (prostaglandin X) which relaxes vascular smooth muscle and potently inhibits platelet aggregation. The release of prostaglandin (PG) X can be stimulated by incubation with arachidonic acid or prostaglandin endoperoxides PGG2 or PGH2. The basal release of PGX or the release stimulated with arachidonic acid can be inhibited by previous treatment with indomethacin or by washing the tissue with a solution containing indomethacin. The formation of PGX from prostaglandin endoperoxides PGG2 or PGH2 is not inhibited by indomethacin. 15-hydro-peroxy arachidonic acid (15-HPAA) inhibits the basal release of PGX as well as the release stimulated by arachidonic acid or prostaglandin endoperoxides (PGG2 or PGH2). Fresh arterial tissue obtained from control or indomethacin treated rabbits, when incubated with platelet rich plasma (PRP) generates PGX. This generation is inhibited by treating the tissue with 15-HPAA. A biochemical interaction between platelets and vessel wall is postulated by which platelets feed the vessel wall with prostaglandin endoperoxides which are utilized to form PGX. Formation of PGX could be the underlying mechanism which actively prevents, under normal conditions, the accumulation of platelets on the vessel wall.  相似文献   

9.
Prostaglandins are thought to play an important role in the local regulation of glomerular blood flow and in the release of renin from the juxtaglomerular apparatus. We therefore examined prostaglandin synthesis by isolated rat glomeruli. Isolated glomeruli were either prelabeled with [14C] arachidonic acid or were incubated with [14C] arachidonic acid for the entire experimental incubation in Krebs buffer. Prostaglandin synthesis was determined by thin layer radio-chromatography of acid extracts of the supernatant solutions. Indomethacin inhibitable synthesis of small amounts of 6-keto-PGF1 alpha, the metabolite of prostacyclin (PGI2,) and larger amounts of PGF2 alpha, and PGE2, and possibly thromboxane B2 (TXB2) by isolated glomeruli could be demonstrated with either prelabeling or direct incubation. These findings support the hypothesis that prostaglandins are produced within the glomerulus where they may affect local glomerular blood flow and function.  相似文献   

10.
We investigated the effects of phenelzine and tranylcypromine on the release of prostacyclin, thromboxane A2, prostaglandin E2, and prostaglandin E1 from the isolated perfused rat mesenteric vascular bed. Perfusion of the preparation with phenelzine in concentrations of 15, 45, and 135 microM for 150 min led to attenuated release of all four prostaglandins measured. Inhibition generally occurred with the lowest dose used and was most prominent with the highest concentration. Tranylcypromine also decreased prostaglandin formation. However, low doses were not effective in the suppression of prostacyclin release. Both drugs had an inhibitory effect on production of prostaglandin E1, which is a metabolite of dihomo-gamma-linolenic acid, the precursor of arachidonic acid, but this was only shown to be significant with phenelzine. In this work we demonstrate that phenelzine and tranylcypromine have an inhibitory effect on the production of 2-series prostaglandins derived from arachidonic acid, and possibly a similar effect on prostaglandins of the 1-series derived from dihomo-gamma-linolenic acid.  相似文献   

11.
A method for the determination of prostaglandin G/H synthase and lipoxygenase activities in tissues was developed and employed with rat gastric mucosa samples. Tissues and microsomes were incubated in a buffer containing nonionic detergent and 1.32 mM arachidonic acid for 10 min. Following extraction with ethyl acetate, the oxidation products of arachidonic acid were derivatized with panacyl bromide. A reversed-phase column and a quaternary mobile phase were used to separate and quantitate the panacyl bromide esters of prostaglandin E2 and leukotriene C4/D4. Prostaglandin G/H synthase and lipoxygenase activities were determined in gastric mucosa and were 371 +/- 66 and 173 +/- pg/mg/min, respectively.  相似文献   

12.
M Murakami  I Kudo  K Inoue 《FEBS letters》1991,294(3):247-251
The extracellular form of 14-kDa group II phospholipase A2 has been found to accumulate at various types of inflammatory sites. In the present paper, we have studied the possible role of the extracellular 14-kDa group II phospholipase A2 in the process of prostaglandin production in activated rat mast cells. When mast cells obtained from the peritoneal cavity of rats were sensitized with IgE, challenged with antigen and then exposed to extracellular 14-kDa group II phospholipase A2, appreciable release of prostaglandin D2 was observed. Generation of prostaglandin D2 was dependent on the concentration of the phospholipase A2 as well as that of the antigen, while no appreciable prostaglandin D2 generation was observed with cells in the absence of the antigen. No histamine release was observed under the same conditions. Phosphatidylcholine in mast cell membranes was appreciably hydrolyzed to liberate free arachidonic acid when mast cells were incubated with 14-kDa group II phospholipase A2 added exogenously in the presence of the antigen. Both the generation of prostaglandin D2 and the release of arachidonic acid were retarded by inhibitors specific to 14-kDa group II phospholipase A2. Thus, 14-kDa group II phospholipase A2 may function in the process of inflammation by acting on IgE-antigen-primed mast cells, which are not fully activated, to generate eicosanoids.  相似文献   

13.
Porcine relaxin (30 μg/ml) when incubated with separated myometrial tissue from 20 day pregnant rats inhibited basal prostacyclin output by 50%. However, relaxin did not inhibit the increased prostacyclin output observed when myometrial tissue was incubated with the prostaglandin precursor, arachidonic acid (10 μg/ml). When prostacyclin release was stimulated by incubation with oxytocin (10 mU/ml), however, relaxin completely inhibited the increased output. The results suggest that relaxin interferes with basal and oxytocin-stimulated prostacyclin formation in pregnant myometrial tissue by inhibiting the action of the enzyme phospholipase A2 which is responsible for liberating the precursor arachidonic acid endogenously.  相似文献   

14.
Arachidonic acid is released from specific glycerophospholipids in human amnion and is used to synthesize prostaglandins that are involved in parturition. In an investigation of the regulation of prostaglandin production in amnion, the effects of isoproterenol on discs of amnion tissue maintained in vitro were examined. Isoproterenol caused a large but transitory increase in the amount of cyclic AMP in amnion discs and this was accompanied by a sustained stimulation of the release of arachidonic acid (but not palmitic acid or stearic acid) and prostaglandin E2. The dependencies of cyclic AMP accumulation, arachidonic acid mobilization and prostaglandin E2 release on the concentration of isoproterenol were similar, each response was maximal at 10(-6) M isoproterenol and was inhibited by propranolol. Dibutyryl cyclic AMP stimulated the release of prostaglandin E2 from amnion discs. Although prostaglandin E2, when added to amnion discs caused an accumulation of cyclic AMP, it did not appear to mediate isoproterenol-induced accumulation of cyclic AMP since the latter effect was insensitive to indomethacin in concentrations at which prostaglandin production was inhibited greatly. These data support the proposition that catecholamines, found in increasing amounts in amniotic fluid during late gestation, may be regulators of prostaglandin production by the amnion.  相似文献   

15.
The rat thyroid cell line, FRTL-5, expresses an alpha 1-adrenergic receptor when exposed to thyrotropin. We have found that occupation of this alpha 1-adrenergic receptor by norepinephrine stimulated the release of [3H]arachidonic acid from prelabeled cells. Arachidonic acid was metabolized primarily to prostaglandin E2 and to much smaller amounts of 11-hydroxy-5,8,11,13-eicosatetraenoic acid, 15-hydroxy-5,8,11,13-eicosatetraenoic acid, prostaglandin D2, and thromboxane B2. Synthesis of all these metabolites was inhibited by the cyclooxygenase inhibitor indomethacin. When FRTL-5 cells were starved of thyrotropin for 24 h, norepinephrine nearly doubled [3H]thymidine uptake into DNA. Cyclooxygenase inhibitors inhibited norepinephrine-stimulated thymidine uptake by 60-70%. Of several arachidonic acid metabolites tested, none was able to stimulate thymidine uptake directly in the presence of indomethacin. Prostaglandin E2, however, was able to restore [3H]thymidine uptake when added together with norepinephrine in the presence of indomethacin. Thus, occupation of an alpha 1-adrenergic receptor in a functional rat thyroid cell line leads to arachidonic acid release. Subsequent metabolism of the arachidonic acid by the cyclooxygenase pathway leads to synthesis of prostaglandin E2, which mediates a norepinephrine-stimulated activity related to cell replication.  相似文献   

16.
Levels of free arachidonic acid and of prostaglandin F and E2 have been measured in both brain cortex and cerebellum of rats killed by focussed microwave irradiation, and after decapitation followed by ischemia. The same parameters were studied during incubation assays. It was found that: a) after ischemia levels of both free arachidonic acid and of prostaglandins in cerebellum are lower than in brain cortex, b) formation of prostaglandins from endogenous precursor in incubated cortex is higher than in cerebellum, c) release of free arachidonic acid occurs mainly during the time interval between the sacrifice of the animals and the beginning of the incubation, whereas prostaglandins are formed mainly during the incubation assay. The correlation between release of free arachidonic acid and prostaglandin formation is discussed.  相似文献   

17.
The effect of triarachidonin on the synthesis of prostaglandins in rabbit kidney medulla microsomes was examined. Medulla microsomes were incubated with triarachidonin in 0.1 M--Tris/HCl buffer (pH 7.0) containing reduced glutathione and hydroquinone and the formed prostaglandin E2, prostaglandin F2 alpha and prostaglandin D2 were measured by high-pressure liquid chromatography using 9-anthryldiazomethane for derivatization. The addition of triarachidonin (1-10 microM) stimulated prostaglandin formation in a dose-dependent manner. Under our incubation conditions rabbit kidney medulla was found to produce prostaglandin E2 mainly. When arachidonic acid, instead of triarachidonin, was added to the incubation mixture of microsomes, the identical profile of prostaglandin products was obtained. When the pH of the reaction mixture was changed from 7.0 to 8.0, the rate of triarachidonin-induced prostaglandin E2 formation was approximately 60% of that observed at pH 7.0. Studies utilizing Ca2+ and EGTA revealed that triacylglycerol lipase of kidney medulla is independent of Ca2+. The addition of epinephrine made the stimulatory effect of triarachidonin on prostaglandin E2 formation more pronounced. These results suggest that epinephrine-activated triacylglycerol lipase is present in the renomedullary microsomes, and this enzyme activity is a potential mediator of release of arachidonic acid for prostaglandin synthesis in the kidney medulla.  相似文献   

18.
Staurosporine is a microbial anti-fungal alkaloid having a most potent inhibitory activity on protein kinase C and is recently found as a non-12-O-tetradecanoylphorbol-13-acetate (non-TPA)-type tumor promoter of mouse skin, although tumor promotion induced by a TPA-type tumor promoter teleocidin is suppressed by staurosporine. When rat peritoneal macrophages were incubated in the medium containing various concentrations of staurosporine, prostaglandin E2 production and release of radioactivity from [3H]arachidonic acid-labeled macrophages were stimulated at concentrations of 1 and 10 ng/ml. But higher concentrations of staurosporine such as 100 and 1000 ng/ml showed no stimulative effect on prostaglandin E2 production although cytoplasmic free calcium levels were increased in a dose-dependent manner. Staurosporine-induced stimulation of prostaglandin E2 production was inhibited by treatment with cycloheximide, suggesting that a certain protein synthesis is prerequisite for the stimulation of arahcidonic acid metabolism. At higher concentrations (100 and 1000 ng/ml), staurosporine inhibited TPA-type tumor promoter (TPA, teleocidin and aplysiatoxin)-induced stimulation of arachidonic acid metabolism probably due to the inhibition of protein kinases. Tumor promotion activity and anti-tumor promotion activity of staurosporine might be explained by the fact that the lower concentrations of staurosporine stimulate arachidonic acid metabolism and the higher concentrations of staurosporine inhibit the tumor promoter-induced arachidonic acid metabolism, respectively.  相似文献   

19.
Prostaglandins released from isolated ventilated and perfused rat lungs were measured by a simple modification of the Vane technique using the rat stomach fundus as a continuous bioassay tissue. Exogenously supplied arachidonic acid was converted mainly to PGF2alpha which was determined by bioassay. A novel method for mixing a stream of inhibitors with the perfusate was used to determine PGF2alpha in the presence of substrate amounts of arachidonic acid. Using this system the apparent Km for PGF2alpha production with arachidonic acid as the substrate was found to be 1.90 X 10(-4)M, while the Ki for aspirin was found to 2.47 X 10(-4)M. These kinetic parameters are close to those reported for cell free systems and subcellular fractions suggesting that both substrate and inhibitor have ready access to the site of prostaglandin synthesis. The method appears to be generally useful to determine the effect of drugs and environment factors on the release of prostaglandins by the lung.  相似文献   

20.
Arachidonic acid is released from specific glycerophospholipids in human amnion and is used to synthesize prostaglandins that are involved in parturition. In an investigation of the regulation of prostaglandin production in amnion, the effects of isoproterenol on discs of amnion tissue maintained were examined. Isoproterenol caused a large but transitory increase in the amount of cyclic AMP in amnion discs and this was accompanied by a sustained stimulation of the release of arachidonic acid (but not palmitic acid or stearic acid) and prostaglandin E2. The dependencies of cyclic AMP accumulation, arachidonic acid mobilization and prostaglandin E2 release on the concentration of isoproterenol were similar, each response was maximal at 10−6 M isoproterenol and was inhibited by propranolol. Dibutyryl cyclic AMP stimulated the release of prostaglandin E2 from amnion discs. Although prostaglandin E2, when added to amnion discs caused an accumulation of cyclic AMP, it did not appear to mediate isoproterenol-induced accumulation of cyclic AMP since the latter effect was insensitive to indomethacin in concentrations at which prostaglandin production was inhibited greatly. These data support the proposition that catecholamines, found in increasing amounts in amniotic fluid during late gestation, my be regulators of prostaglandin production by the amnion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号