首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent decades, two of the main management tools used to stem biodiversity erosion have been biodiversity monitoring and the conservation of natural areas. However, socio-economic pressure means that it is not usually possible to preserve the entire landscape, and so the rational prioritisation of sites has become a crucial issue. In this context, and because floodplains are one of the most threatened ecosystems, we propose a statistical strategy for evaluating conservation value, and used it to prioritise 46 waterbodies in the Loire floodplain (France). We began by determining a synthetic conservation index of fish communities (Q) for each waterbody. This synthetic index includes a conservation status index, an origin index, a rarity index and a richness index. We divided the waterbodies into 6 clusters with distinct structures of the basic indices. One of these clusters, with high Q median value, indicated that 4 waterbodies are important for fish biodiversity conservation. Conversely, two clusters with low Q median values included 11 waterbodies where restoration is called for. The results picked out high connectivity levels and low abundance of aquatic vegetation as the two main environmental characteristics of waterbodies with high conservation value. In addition, assessing the biodiversity and conservation value of territories using our multi-index approach plus an a posteriori hierarchical classification methodology reveals two major interests: (i) a possible geographical extension and (ii) a multi-taxa adaptation.  相似文献   

2.
The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and one variation is suggested that can also be solved using a greedy algorithm.  相似文献   

3.
系统发育多样性测度及其在生物多样性保护中的应用   总被引:1,自引:1,他引:1  
生物多样性保护面临两个基本问题:如何确定生物多样性测度以及如何保护生物多样性。传统的生物多样性测度是以物种概念为基础的,用生态学和地理学方法确定各种生物多样性指数。其测度依赖于样方面积的大小,并且所有的物种在分类上同等对待。系统发育多样性测度基于系统发育和遗传学的理论和方法,能确定某一物种对类群多样性的贡献大小。该方法比较复杂,只有在类群的系统发育或遗传资料比较齐全时方能应用。本文认为,物种生存力途径和系统发育多样性测度相结合有助于确定物种和生态系统保护的优先秩序。  相似文献   

4.
Prioritization of taxa for conservation must rest on a foundation of correctly identified species boundaries, enhanced by an understanding of evolutionary history and phylogenetic relationships. Therefore, we can incorporate both evolutionary and ecological processes into efforts to sustain biodiversity. In this issue of Molecular Ecology, Malaney & Cook ( 2013 ) highlight the critical value of an evolutionary biogeographical approach, combining multilocus phylogeography with climatic niche modelling to infer phylogenetically weighted conservation priorities for evolutionary lineages of jumping mice across North America. Remarkably, they find that the Preble's meadow jumping mouse (Zapus hudsonius preblei), long debated as a threatened taxon, in fact represents the southern terminus of a relatively uniform lineage that expanded well into Alaska during the Holocene. By contrast, some other relictual and phylogenetically divergent taxa of jumping mice likely warrant greater conservation priority. This study highlights the value of integrative approaches that place current taxonomy in a broader evolutionary context to identify taxa for conservation assessment, but also highlights the challenges in maintaining potential for adaptive responses to environmental change.  相似文献   

5.
Iconic, flagship and rare threatened bird taxa attract disproportionate amounts of public attention, and are often used to enable broader conservation strategies. Yet, little is known about why certain taxa achieve iconic or flagship status. Also unclear is whether the perception of rarity among those acting to conserve threatened birds is sufficient to influence attitudes and behaviour that lead to effective conservation action and, if so, which characteristics of rare birds are important to their conservation. We interviewed 74 threatened bird conservation stakeholders to explore perceptions about iconic, flagship and rare threatened birds and classified their attitudes using a new typology of avifaunal attitudes. There was a relationship between societal interest and conservation effort for threatened species characterised as iconic, flagship and rare. Iconic species tended to arouse interest or emotion in people due to being appealing and readily encountered, thereby attracting conservation interest that can benefit other biodiversity. Flagships tended to have distinguishing physical or cultural characteristics and were used to convey conservation messages about associated biodiversity. Attitudes about rarity mostly related to a taxon’s threatened status and small population size. Rarity was important for threatened bird conservation but not always associated with attitudes and behaviour that lead to effective conservation action. We conclude that conservation action for individual threatened bird taxa is biased and directly influenced by the ways taxa are socially constructed by stakeholders, which is specific to prevailing culture and stakeholder knowledge.  相似文献   

6.
The phylogenetic diversity of extant lemurs represents one of the most important but least studied aspects of the conservation biology of primates. The phylogenetic diversity of a species is inversely proportional to the relative number and closeness of its phylogenetic relatives. Phylogenetic diversity can then be used to determine conservation priorities for specific biogeographic regions. Although Malagasy strepsirhines represent the highest phylogenetic diversity among primates at the global level, there are few phylogenetic data on species-specific and regional conservation plans for lemurs in Madagascar. Therefore, in this paper the following questions are addressed for extant lemurs: 1) how does the measure of taxonomic uniqueness used by Mittermeier et al. (1992 Lemurs of Madagascar; Gland, Switzerland: IUCN) equate with an index of phylogenetic diversity, 2) what are the regional conservation priorities based on analyses of phylogenetic diversity in extant lemurs, and 3) what conservation recommendations can be made based on analyses of phylogenetic diversity in lemurs? Taxonomic endemicity standardized weight (TESW) indices of phylogenetic diversity were used to determine the evolutionary component of biodiversity and to prioritize regions for conserving lemur taxa. TESW refers to the standardization of phylogenetic diversity indices for widespread taxa and endemicity of species. The phylogenetic data came from recent genetic studies of Malagasy strepsirhines at the species level. Lemur species were assigned as being either present or absent in six biogeographic regions. TESW indices were combined with data on lemur complementarity and protected areas to assign conservation priorities at the regional level. Although there were no overall differences between taxonomic ranks and phylogenetic rankings, there were significant differences for the top-ranked taxa. The phylogenetic component of lemur diversity is greatest for Daubentonia madagascariensis, Allocebus trichotis, Lepilemur septentrionalis, Indri indri, and Mirza coquereli. Regional conservation priorities are highest for lemurs that range into northeast humid forests and western dry forests. Expansion of existing protected areas in these regions may provide the most rapid method for preserving lemurs. In the long term, new protected areas must be created because there are lemur species that: 1) are not found in existing protected areas, 2) exist only in one or two protected areas, and 3) are still being discovered outside the current network of protected areas. Data on the population dynamics and feeding ecology of phylogenetically important species are needed to ensure that protected areas adequately conserve lemur populations in Madagascar.  相似文献   

7.
Identifying the main determinants of tropical marine biodiversity is essential for devising appropriate conservation measures mitigating the ongoing degradation of coral reef habitats. Based on a gridded distribution database and phylogenetic information, we compared the phylogenetic structure of assemblages for three tropical reef fish families (Labridae: wrasses, Pomacentridae: damselfishes and Chaetodontidae: butterflyfishes) using the net relatedness (NRI) and nearest taxon (NTI) indices. We then related these indices to contemporary and historical environmental conditions of coral reefs using spatial regression analyses. Higher levels of phylogenetic clustering were found for fish assemblages in the Indo‐Australian Archipelago (IAA), and more particularly when considering the NTI index. The phylogenetic structure of the Pomacentridae, and to a lower extent of the Chaeotodontidae and Labridae, was primarily associated with the location of refugia during the Quaternary period. Phylogenetic clustering in the IAA may partly result from vicariance events associated with coral reef fragmentation during the glacial periods of the Quaternary. Variation in the patterns among fish families further suggest that dispersal abilities may have interacted with past habitat availability in shaping the phylogenetic structure of tropical reef fish assemblages.  相似文献   

8.
Richness, rarity, endemism and complementarity of indicator taxon species are often used to select conservation areas, which are then assumed to represent most regional biodiversity. Assessments of the degree to which these indicator conservation areas coincide across different taxa have been conducted on a variety of vertebrate, invertebrate and plant groups at a national scale in Britain, Canada, USA and South Africa and at a regional scale in Cameroon, Uganda and the USA. A low degree of spatial overlap among and within these selected indicator conservation areas has been demonstrated. These results tend to suggest that indicator conservation areas display little congruence across different taxa. However, some of these studies demonstrate that many conservation areas for indicator taxa capture a high proportion of non-target species. Thus it appears that indicator conservation areas might sample overall biodiversity efficiently. These indicator conservation areas may, however, exclude species essential for effective conservation, e.g. rare, endemic or endangered species. The present study investigated the value of indicator taxa as biodiversity surrogates using spatial congruence and representativeness of different indicator priority conservation areas. The conservation status of species excluded by the indicator approaches is also assessed. Indicator priority conservation areas demonstrate high land area requirements in order to fully represent non-target species. These results suggest that efficient priority area selection techniques must reach a compromise between maximizing non-target species gains and minimizing land-use requirements. Reserve selection procedures using indicator-based complementarity appear to be approaches which best satisfy this trade-off.  相似文献   

9.
DG指数在定量多样性时的缺陷及其内涵解析   总被引:2,自引:0,他引:2  
生物多样性通常使用物种丰富度、Simpson指数、Shannon-Wiener多样性指数等来进行度量, 但是在土壤动物群落研究中, 由于使用了粗水平的分类方法, 因此即使生境变化很大, 这些多样性指数在评估群落多样性变化时仍然是不适当的。为了克服这种限制, 廖崇惠(1990, 2009)提出用DG指数来代替这些标准的多样性指数, 并在土壤动物生态学领域得到了广泛应用。然而笔者分析发现DG指数与Pielou均匀度指数呈显著的负相关关系(r = –0.534, P = 0.000), 即, 高的均匀度反而有低的多样性。另外, DG指数与类群数(r = 0.648, P = 0.000)和类群密度(r = 0.487, P = 0.000)呈明显的正相关, 类群数的下降可以通过部分类群密度的上升而获得补偿, 群落的类群丢失后却可以获得一个不变的甚至更高的多样性值。因此, 笔者不支持DG指数用于测度生物多样性, 提议使用各类群实际群势与潜在群势比值的平均值来估计群落潜在多度的实现程度。如果继续使用DG指数作为实际生境条件的一个指标, 那么与以往不同, DG指数测度的是该生境群落多度增长的一种潜力。  相似文献   

10.
The rapid decrease of biodiversity and limited resources for surveying it have forced researchers to devise short-cuts for biodiversity surveys and conservation planning. These short-cuts include environmental surrogates, higher taxon surrogates, indicator species and indicator groups. We considered indicator groups as surrogates for wholesale biodiversity and cross-taxon congruence in biodiversity patterns in littoral macroinvertebrates of boreal lakes. Despite the fact that we considered indicator groups amongst a wide variety of taxa, such as two-winged flies, mayflies, caddisflies, beetles, bugs and molluscs, none of the proposed groups possessed all of the qualities of a good indicator taxon for biodiversity surveys and conservation planning. We found generally weak, yet typically significant, relationships between the proposed indicator groups and remaining taxa in both species richness and assemblage similarity. Low congruence was paralleled by somewhat differing relationships of the taxonomic groups to various environmental features of lakes. Furthermore, the relationships of most indicator groups to the environmental features of lakes were not particularly strong. The present findings are unfortunate, because indicator groups did not perform well in predicting the wholesale biodiversity of littoral macroinvertebrates. Thus, there appears to be no short-cut for considering all groups of macroinvertebrates in biodiversity surveys, conservation planning and characterisation of environmental relationships of lake littoral assemblages.  相似文献   

11.
生物多样性的海拔分布格局是生态学研究的热点。海拔作为综合性因子驱动着植物群落的物种、系统发育与功能多样性的空间分布。以戴云山南坡900-1600 m森林植物群落为研究对象,探讨物种多样性、系统发育指数与环境驱动因子的相互关系以及环境因子在群落构建与多样性维持中的重要意义。结果表明:(1)森林植物群落的系统发育多样性与物种多样性沿海拔均呈现中间高度膨胀格局。(2)物种多样性Margalef指数、Shannon-Wiener指数与系统发育多样性指数呈显著正相关,表明物种多样性越高,系统发育多样性也越高。Shannon-Wiener指数与物种多样性指数(Margalef、Pielou、Simpson指数)、系统发育多样性及系统发育结构都存在显著相关性,一定程度上Shannon-Wiener指数可以代替其他指数。Pielou指数、Simpson指数、Shannon-Wiener指数与系统发育结构NRI (Net relatedness index)指数、NTI (Net nearest taxa index)指数存在显著正相关,表明群落优势度、均匀度与系统发育结构相关性较强。(3)土壤全磷含量是影响系统发育多样性和物种多样性的主要驱动因子,土壤含水量是影响Shannon-Wiener、Pielou、Simpson指数的最显著因子,海拔是影响群落系统发育结构的主要因素。海拔是影响系统发育结构变化的主要环境因子,而土壤因子是影响物种多样性与系统发育多样性的主要因素,进一步验证了物种多样性与系统发育多样性的高度相关,结果旨在揭示物种群落空间分布规律。  相似文献   

12.
Linke  Simon  Norris  Richard 《Hydrobiologia》2003,500(1-3):203-211
The aim of this study is to create a two-tiered assessment combining restoration and conservation, both needed for biodiversity management. The first tier of this approach assesses the condition of a site using a standard bioassessment method, AUSRIVAS, to determine whether significant loss of biodiversity has occurred because of human activity. The second tier assesses the conservation value of sites that were determined to be unimpacted in the first step against a reference database. This ensures maximum complementarity without having to set a priori target areas. Using the reference database, we assign site-specific and comparable coefficients for both restoration (Observed/Expected taxa with >50% probability of occurrence) and conservation values (O/E taxa with <50%, rare taxa). In a trial on 75 sites on rivers around Sydney, NSW, Australia we were able to identify three regions: (1) an area that may need restoration; (2) an area that had a high conservation value and; (3) a region that was identified as having significant biodiversity loss but with high potential to respond to rehabilitation and become a biodiversity hotspot. These examples highlight the use of the new framework as a comprehensive system for biodiversity assessment.  相似文献   

13.
An upgraded national biodiversity risk assessment index   总被引:1,自引:0,他引:1  
The setting of priorities for international conservation assistance is important due to limited available financial resources. A recent study constructed a national biodiversity risk assessment index (NABRAI) in order to prioritise nations for conservation assistance. The present study aimed to upgrade the original index in order to address computational and weighting inconsistencies. The results of the upgraded index corresponded relatively well with those of the original model. We feel this study goes a step further towards strengthening the methodologies for biodiversity risk assessment. However, due to the absence of theoretical constructs for biodiversity risk assessment and the considerable disagreement between the various models of biodiversity risk, we recognise a need for a more sophisticated understanding of national biodiversity risk before these models can be used to identify global conservation priorities with any degree of confidence.  相似文献   

14.
Secondary salinisation is recognised worldwide as a threat to aquatic biodiversity. Wetlands in the Wheatbelt Region of Western Australia are particularly affected as a result of clearing of deep-rooted native vegetation for agriculture. Between 1996 and 2001, the Western Australian government nominated six natural diversity recovery catchments (NDRCs), being catchments with high value and diverse wetlands in need of protection. One, the Buntine–Marchagee NDRC, supports approximately 1000 wetlands in varying states of salinisation. The challenge is to prioritise these wetlands for ongoing management. In this paper we propose an approach to prioritise representative wetlands using aquatic invertebrates. On the basis of hydrology, salinity and remnant vegetation, 20 wetlands covering a range of salinities were selected for sampling of water quality and aquatic invertebrates. Of the 202 taxa recorded, most endemic taxa occurred in fresh/brackish wetlands, while hypersaline wetlands supported predominantly cosmopolitan species. Taxa richness was greater in fresh/brackish than saline and hypersaline wetlands, with conductivity explaining 83 % of between-wetland variation in taxa richness. Classification using invertebrate assemblages separated fresh/brackish, saline and hypersaline wetlands, with greatest between-year variability within saline and hypersaline sites. Wetlands were ranked using taxa diversity, presence of conservation-significant taxa and temporal similarity. Mean rank across indices provided the final overall order of priority. Hypersaline wetlands were ordered separately to the fresher water wetlands (fresh/brackish and saline) so that priority for future management was detailed for both types of wetlands. The analysis indicated that although fresh/brackish sites support the highest biodiversity, naturally saline sites also supported wetland assemblages worthy of ongoing protection.  相似文献   

15.
夏迎  阳文静  钟洁  张琍  刘丹丹  游清徽 《生态学报》2024,44(8):3337-3347
理解生物多样性对生态系统功能及稳定性的影响对于制定有效的保护管理策略有重要意义。然而,目前生物多样性与群落生产力、稳定性的关系仍存在争议。在鄱阳湖湿地布设30个采样点,于2019年秋季开展大型底栖无脊椎动物群落野外调查。基于底栖动物群落数据,采用广义加性模型分析物种、谱系、功能多样性对鄱阳湖湿地底栖动物群落次级生产力与稳定性的影响。结果表明:底栖动物群落的次级生产力与反映物种多样性的指数(Simpson多样性指数、Shannon-Wiener多样性指数、Pielou均匀度指数)、分类多样性指数、平均分类差异指数、功能丰富度指数等呈显著的负相关,其中Pielou均匀度指数与次级生产力的相关度最高(r2=0.33)。功能多样性对群落次级生产力的空间分异有最高的解释度(r2=0.75)。P/B值(次级生产力与生物量之比代表群落稳定性)与物种、谱系、功能多样性指数均呈正相关,其中功能丰富度与P/B值的相关度最高(r2=0.22)。反映物种多样性的三个指数总体上对P/B值的空间分异解释度最高(r2=0.37)。谱系多样性与次级生产力、P/B值的相关性相对较弱。生物多样性指数总体分别解释了次级生产力和群落稳定性中81.9%、54.8%的变异。上述研究结果表明,生物多样性与群落生产力、稳定性的关系可能因具体的生物群落而异。研究结果对于鄱阳湖湿地的底栖生物多样性保护有参考价值。  相似文献   

16.
The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests.  相似文献   

17.
Based on the data from ten cruises that were carried out in 2001–2009, the structure of zooplankton communities was assessed in the Western Arctic seas using the estimated biodiversity indices. The greatest number of taxa was revealed in the south, southeast, and north of the Barents Sea. The average number of taxa in the sample was at a maximum off the coast of the Svalbard Archipelago. The greatest value of the Shannon index was registered within the Murmansk coastal water mass (Barents Sea) and Svalbard Archipelago. The median values of the evenness of the abundance of fauna were 0.5–0.6. A trend to a reduction of the biodiversity parameters of zooplankton communities with increasing square of water area water area was found. An inverse correlation between the Shannon and evenness indices for the total zooplankton abundance was revealed.  相似文献   

18.
19.
Abstract Identification of biodiversity hotspots is essential to conservation strategies aimed at minimizing the possibility of losing half of the world's species in the next 50 years. The aims of the present study were: (i) to locate and designate zones of endemism in the temperate forest of South America; and (ii) to compare the distribution of these areas with the distribution of existing protected areas in this habitat type. Endemism areas were determined by using parsimonious analysis of endemism, which identified zones of endemism on the basis of sets of endemic species that were restricted to two or more study areas. We used distribution information for five unrelated taxa (ferns, trees, reptiles, birds and mammals) to provide more reliable results and patterns than would work with only a single taxon or related taxa. The northern part of this region has high endemism for all of the taxa considered in this study. We demonstrate that although the temperate forest of South America has more than 30% of its area under some type of protection, correlation between protected areas and the areas of endemism is remarkably low. In fact, less than 10% of protected areas are situated in areas that have the greatest value for conservation (i.e. high endemism). Under the current strategy, biodiversity within South America's temperate forest is in danger despite the large amount of protected area for this forest type.  相似文献   

20.
With approximately 3000 marine species, Tunicata represents the most disparate subtaxon of Chordata. Molecular phylogenetic studies support Tunicata as sister taxon to Craniota, rendering it pivotal to understanding craniate evolution. Although successively more molecular data have become available to resolve internal tunicate phylogenetic relationships, phenotypic data have not been utilized consistently. Herein these shortcomings are addressed by cladistically analyzing 117 phenotypic characters for 49 tunicate species comprising all higher tunicate taxa, and five craniate and cephalochordate outgroup species. In addition, a combined analysis of the phenotypic characters with 18S rDNA-sequence data is performed in 32 OTUs. The analysis of the combined data is congruent with published molecular analyses. Successively up-weighting phenotypic characters indicates that phenotypic data contribute disproportionally more to the resulting phylogenetic hypothesis. The strict consensus tree from the analysis of the phenotypic characters as well as the single most parsimonious tree found in the analysis of the combined dataset recover monophyletic Appendicularia as sister taxon to the remaining tunicate taxa. Thus, both datasets support the hypothesis that the last common ancestor of Tunicata was free-living and that ascidian sessility is a derived trait within Tunicata. “Thaliacea” is found to be paraphyletic with Pyrosomatida as sister taxon to monophyletic Ascidiacea and the relationship between Doliolida and Salpida is unresolved in the analysis of morphological characters; however, the analysis of the combined data reconstructs Thaliacea as monophyletic nested within paraphyletic “Ascidiacea”. Therefore, both datasets differ in the interpretation of the evolution of the complex holoplanktonic life history of thaliacean taxa. According to the phenotypic data, this evolution occurred in the plankton, whereas from the combined dataset a secondary transition into the plankton from a sessile ascidian is inferred. Besides these major differences, both analyses are in accord on many phylogenetic groupings, although both phylogenetic reconstructions invoke a high degree of homoplasy. In conclusion, this study represents the first serious attempt to utilize the potential phylogenetic information present in phenotypic characters to elucidate the inter-relationships of this diverse marine taxon in a consistent cladistic framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号