首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sialic acids play an important role during development, regeneration and pathogenesis. The precursor of most physiological sialic acids, such as N-acetylneuraminic acid is N-acetyl-d-mannosamine. Application of the novel N-propanoylmannosamine leads to the incorporation of the new sialic acid N-propanoylneuraminic acid into cell surface glycoconjugates. Here we analyzed the modified sialylation of several organs with N-propanoylneuraminic acid in mice. By using peracetylated N-propanoylmannosamine, we were able to replace in vivo between 1% (brain) and 68% (heart) of physiological sialic acids by N-propanoylneuraminic acid. The possibility to modify cell surfaces with engineered sialic acids in vivo offers the opportunity to target therapeutic agents to sites of high sialic acid concentration in a variety of tumors. Furthermore, we demonstrated that application of N-propanoylmannosamine leads to a decrease in the polysialylation of the neural cell adhesion molecule in vivo, which is a marker of poor prognosis for some tumors with high metastatic potential.  相似文献   

2.
The function of the central nervous system largely depends on growth and differentiation (neurite outgrowth) of neural cells and it is well established that growth factors, especially nerve growth factor NGF stimulate neurite outgrowth. However, additional factors are implicated in this process notably the redox state of the cells. For the first time we could demonstrate that the application of recombinant thioredoxin stimulates neurite outgrowth of PC12 cells to the same extend as NGF. Thioredoxin, a small redox protein is a major player in the cellular protein reduction system. An increased expression and secretion of thioredoxin is achieved by the application of the novel sialic acid precursor N-propionylmannosamine (ManNProp). From earlier studies it is known that this N-acylmannosamine analog stimulates significantly the neurite outgrowth in cell cultures. This finding would give new insights into the mechanism of the nerve-stimulatory action of ManNProp and demonstrates the novel role of thioredoxin during the regulation of nerve growth, encouraging further studies.  相似文献   

3.
Herein we report the synthesis of N-acetyl neuraminic acid derivatives as 4-methylumbelliferyl glycosides and their use in fluorometrically quantifying human and bacterial sialidase activity and substrate specificities. We found that sialidases in the human promyelocytic leukemic cell line HL60 were able to cleave sialic acid substrates with fluorinated C-5 modifications, in some cases to a greater degree than the natural N-acetyl functionality. Human sialidases isoforms were also able to cleave unnatural substrates with bulky and hydrophobic C-5 modifications. In contrast, we found that a bacterial sialidase isolated from Clostridium perfringens to be less tolerant of sialic acid derivatization at this position, with virtually no cleavage of these glycosides observed. From our results, we conclude that human sialidase activity is a significant factor in sialic acid metabolic glycoengineering efforts utilizing unnatural sialic acid derivatives. Our fluorogenic probes have enabled further understanding of the activities and substrate specificities of human sialidases in a cellular context.  相似文献   

4.
BackgroundSialylation of glycoproteins and glycolipids is important for biological processes such as cellular communication, cell migration and protein function. Biosynthesis of CMP-sialic acid, the essential substrate, comprises five enzymatic steps, involving ManNAc and sialic acid and their phosphorylated forms as intermediates. Genetic diseases in this pathway result in different and tissue-restricted phenotypes, which is poorly understood.Methods and resultsWe aimed to study the mechanisms of sialic acid metabolism in knockouts (KO) of the sialic acid pathway in two independent cell lines. Sialylation of cell surface glycans was reduced by KO of GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase), NANS (sialic acid synthase) and CMAS (N-acylneuraminate cytidylyltransferase) genes, but was largely unaffected in NANP (N-acylneuraminate-9-phosphatase) KO, as studied by MAA and PNA lectin binding. NANP is the third enzyme in sialic acid biosynthesis and dephosphorylates sialic acid 9-phosphate to free sialic acid. LC-MS analysis of sialic acid metabolites showed that CMP-sialic acid was dramatically reduced in GNE and NANS KO cells and undetectable in CMAS KO. In agreement with normal cell surface sialylation, CMP-sialic acid levels in NANP KO were comparable to WT cells, even though sialic acid 9-phosphate, the substrate of NANP accumulated. Metabolic flux analysis with 13C6-labelled ManNAc showed a lower, but significant conversion of ManNAc into sialic acid.ConclusionsOur data provide evidence that NANP activity is not essential for de novo sialic acid production and point towards an alternative phosphatase activity, bypassing NANP.General significanceThis report contributes to a better understanding of sialic acid biosynthesis in humans.  相似文献   

5.
The baculovirus/insect cell system is widely used for recombinant protein production, but it is suboptimal for recombinant glycoprotein production because it does not provide sialylation, which is an essential feature of many glycoprotein biologics. This problem has been addressed by metabolic engineering, which has extended endogenous insect cell N-glycosylation pathways and enabled glycoprotein sialylation by baculovirus/insect cell systems. However, further improvement is needed because even the most extensively engineered baculovirus/insect cell systems require media supplementation with N-acetylmannosamine, an expensive sialic acid precursor, for efficient recombinant glycoprotein sialylation. Our solution to this problem focused on E. coli N-acetylglucosamine-6-phosphate 2′-epimerase (GNPE), which normally functions in bacterial sialic acid degradation. Considering that insect cells have the product, but not the substrate for this enzyme, we hypothesized that GNPE might drive the reverse reaction in these cells, thereby initiating sialic acid biosynthesis in the absence of media supplementation. We tested this hypothesis by isolating transgenic insect cells expressing E. coli GNPE together with a suite of mammalian genes needed for N-glycoprotein sialylation. Various assays showed that these cells efficiently produced sialic acid, CMP-sialic acid, and sialylated recombinant N-glycoproteins even in growth media without N-acetylmannosamine. Thus, this study demonstrated that a eukaryotic recombinant protein production platform can be glycoengineered with a bacterial gene, that a bacterial enzyme which normally functions in sialic acid degradation can be used to initiate sialic acid biosynthesis, and that insect cells expressing this enzyme can produce sialylated N-glycoproteins without N-acetylmannosamine supplementation, which will reduce production costs in glycoengineered baculovirus/insect cell systems.  相似文献   

6.
Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.  相似文献   

7.
We report here on a class of quinazoline molecules that inhibit T cell proliferation. The most potent compound N-p-tolyl-2-(3,4,5-trimethoxyphenyl)quinazolin-4-amine (S101) and its close analogs were found to inhibit the proliferation of T cells from human peripheral blood mononuclear cells (PBMC) and Jurkat cells, with IC50 in the sub-micromolar range. The inhibitor induced G2 cell cycle arrest but did not inhibit IL-2 secretion. The anti-proliferative effect correlated with inhibition of the tyrosine phosphorylation of SLP-76, a molecular element in the signaling pathway of the T cell receptor (TCR). The inhibitor restrained proliferation of lymphocytes with much higher potency than non-hematopoietic cells. This new class of specific T cell proliferation inhibitors may serve as lead molecules for the development of agents aimed at diseases in which T cell signaling plays a role and agents to induce tolerance to grafted tissues or organs.  相似文献   

8.
Abstract During the last years, the use of therapeutic glycoproteins has increased strikingly. Glycosylation of recombinant glycoproteins is of major importance in biotechnology, as the glycan composition of recombinant glycoproteins impacts their pharmacological properties. The terminal position of N-linked complex glycans in mammals is typically occupied by sialic acid. The presence of sialic acid is crucial for functionality and affects the half-life of glycoproteins. However, glycoproteins in the bloodstream become desialylated over time and are recognized by the asialoglycoprotein receptors via the exposed galactose and targeted for degradation. Non-natural sialic acid precursors can be used to engineer the glycosylation side chains by biochemically introducing new non-natural terminal sialic acids. Previously, we demonstrated that the physiological precursor of sialic acid (i.e., N-acetylmannosamine) can be substituted by the non-natural precursors N-propanoylmannosamine (ManNProp) or N-pentanoylmannosamine (ManNPent) by their simple application to the cell culture medium. Here, we analyzed the glycosylation of erythropoietin (EPO). By feeding cells with ManNProp or ManNPent, we were able to incorporate N-propanoyl or N-pentanoyl sialic acid in significant amounts into EPO. Using a degradation assay with sialidase, we observed a higher resistance of EPO to sialidase after incorporation of N-propanoyl or N-pentanoyl sialic acid.  相似文献   

9.
10.
N-Acetylneuraminic acid is the most prominent sialic acid in eukaryotes. The structural diversity of sialic acid is exploited by viruses, bacteria, and toxins and by the sialoglycoproteins and sialoglycolipids involved in cell-cell recognition in their highly specific recognition and binding to cellular receptors. The physiological precursor of all sialic acids is N-acetyl D-mannosamine (ManNAc). By recent findings it could be shown that synthetic N-acyl-modified D-mannosamines can be taken up by cells and efficiently metabolized to the respective N-acyl-modified neuraminic acids in vitro and in vivo. Successfully employed D-mannosamines with modified N-acyl side chains include N-propanoyl- (ManNProp), N-butanoyl- (ManNBut)-, N-pentanoyl- (ManNPent), N-hexanoyl- (ManNHex), N-crotonoyl- (ManNCrot), N-levulinoyl- (ManNLev), N-glycolyl- (ManNGc), and N-azidoacetyl D-mannosamine (ManNAc-azido). All of these compounds are metabolized by the promiscuous sialic acid biosynthetic pathway and are incorporated into cell surface sialoglycoconjugates replacing in a cell type-specific manner 10-85% of normal sialic acids. Application of these compounds to different biological systems has revealed important and unexpected functions of the N-acyl side chain of sialic acids, including its crucial role for the interaction of different viruses with their sialylated host cell receptors. Also, treatment with ManNProp, which contains only one additional methylene group compared to the physiological precursor ManNAc, induced proliferation of astrocytes, microglia, and peripheral T-lymphocytes. Unique, chemically reactive ketone and azido groups can be introduced biosynthetically into cell surface sialoglycans using N-acyl-modified sialic acid precursors, a process offering a variety of applications including the generation of artificial cellular receptors for viral gene delivery. This group of novel sialic acid precursors enabled studies on sialic acid modifications on the surface of living cells and has improved our understanding of carbohydrate receptors in their native environment. The biochemical engineering of the side chain of sialic acid offers new tools to study its biological relevance and to exploit it as a tag for therapeutic and diagnostic applications.  相似文献   

11.
Human cells incubated with N-levulinoylmannosamine (ManLev) process this unnatural metabolic precursor into N-levulinoyl sialic acid (SiaLev), which is incorporated into cell surface glycoconjugates. A key feature of SiaLev is the presence of a ketone group that can be exploited in chemoselective ligation reactions to deliver small-molecule probes to the cell surface. A mathematical model was developed and tested experimentally to evaluate the prospects of using cell surface ketones as targets for covalent small-molecule drug delivery. We quantified the absolute number of ketone groups displayed on cell surfaces as a function of the concentration of ManLev in the medium. The apparent rate constants for the hydrolysis and disappearance of the cell surface conjugates were determined, as well as the apparent rate constant for the formation of covalent bonds with cell surface ketones. These values and the mathematical model confirm that chemoselective reactions on the cell surface can deliver to cells similar numbers of molecules as antibodies. Thus, cell surface ketones are a potential vehicle for a metabolically controlled small-molecule drug delivery system.  相似文献   

12.
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.  相似文献   

13.
Sialic acids as receptor determinants for coronaviruses   总被引:3,自引:0,他引:3  
Among coronaviruses, several members are able to interact with sialic acids. For bovine coronavirus (BCoV) and related viruses, binding to cell surface components containing N-acetyl-9- O-acetylneuraminic acid is essential for initiation of an infection. These viruses resemble influenza C viruses because they share not only the receptor determinant, but also the presence of an acetylesterase that releases the 9- O-acetyl group from sialic acid and thus abolishes the ability of the respective sialoglycoconjugate to function as a receptor for BCoV. As in the case of influenza viruses, the receptor-destroying enzyme of BCoV is believed to facilitate the spread of virus infection by removing receptor determinants from the surface of infected cells and by preventing the formation of virus aggregates. Another coronavirus, porcine transmissible gastroenteritis virus (TGEV) preferentially recognizes N-glycolylneuraminic acid. TGEV does not contain a receptor-destroying enzyme and does not depend on the sialic acid binding activity for infection of cultured cells. However, binding to sialic acids is required for the enteropathogenicity of TGEV. Interaction with sialoglycoconjugates may help the virus to pass through the sialic acid-rich mucus layer that covers the viral target cells in the epithelium of the small intestine. We discuss that the BCoV group of viruses may have evolved from a TGEV-like ancestor by acquiring an acetylesterase gene through heterologous recombination.  相似文献   

14.
The biosynthesis of N-acetylneuraminic acid is markedly inhibited by 2-deoxy-2-propionamido-d-glucose (GlcNProp) and to a much lesser extent by 2-deoxy-2-propionamido-d-mannose (ManNProp), but not by 2-deoxy-2-propionamido-d-galactose and N-methylated derivatives of 2-amino-2-deoxy-d-glucose. 2-Deoxy-2-trimethylamino-d-glucose is a weak inhibitor of 2-acetamido-2-deoxy-d-mannose metabolism. When incubated in a cell-free system from rat liver, GlcNProp gives the 6-phosphate, which is converted into N-propionylneuraminic acid. Evidence is presented which shows that it is the metabolites GlcNProp-6-P and ManNProp-6-P which are the competitive inhibitors, and not GlcNProp itself.  相似文献   

15.
Sialic acids are essential components of membrane glycoconjugates. They are responsible for the interaction, structure, and functionality of all deuterostome cells and have major functions in cellular processes in health and diseases. The key enzyme of the biosynthesis of sialic acid is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase that transforms UDP-N-acetylglucosamine to N-acetylmannosamine (ManNAc) followed by its phosphorylation to ManNAc 6-phosphate and has a direct impact on the sialylation of cell surface components. Here, we present the crystal structures of the human N-acetylmannosamine kinase (MNK) domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase in complexes with ManNAc at 1.64 Å resolution, MNK·ManNAc·ADP (1.82 Å) and MNK·ManNAc 6-phosphate·ADP (2.10 Å). Our findings offer detailed insights in the active center of MNK and serve as a structural basis to design inhibitors. We synthesized a novel inhibitor, 6-O-acetyl-ManNAc, which is more potent than those previously tested. Specific inhibitors of sialic acid biosynthesis may serve to further study biological functions of sialic acid.  相似文献   

16.
Sapovirus, a member of the Caliciviridae family, is an important cause of acute gastroenteritis in humans and pigs. Currently, the porcine sapovirus (PSaV) Cowden strain remains the only cultivable member of the Sapovirus genus. While some caliciviruses are known to utilize carbohydrate receptors for entry and infection, a functional receptor for sapovirus is unknown. To characterize the functional receptor of the Cowden strain of PSaV, we undertook a comprehensive series of protein-ligand biochemical assays in mock and PSaV-infected cell culture and/or piglet intestinal tissue sections. PSaV revealed neither hemagglutination activity with red blood cells from any species nor binding activity to synthetic histo-blood group antigens, indicating that PSaV does not use histo-blood group antigens as receptors. Attachment and infection of PSaV were markedly blocked by sialic acid and Vibrio cholerae neuraminidase (NA), suggesting a role for α2,3-linked, α2,6-linked or α2,8-linked sialic acid in virus attachment. However, viral attachment and infection were only partially inhibited by treatment of cells with sialidase S (SS) or Maackia amurensis lectin (MAL), both specific for α2,3-linked sialic acid, or Sambucus nigra lectin (SNL), specific for α2,6-linked sialic acid. These results indicated that PSaV recognizes both α2,3- and α2,6-linked sialic acids for viral attachment and infection. Treatment of cells with proteases or with benzyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside (benzylGalNAc), which inhibits O-linked glycosylation, also reduced virus binding and infection, whereas inhibition of glycolipd synthesis or N-linked glycosylation had no such effect on virus binding or infection. These data suggest PSaV binds to cellular receptors that consist of α2,3- and α2,6-linked sialic acids on glycoproteins attached via O-linked glycosylation.  相似文献   

17.
We developed an atomic force microscopy (AFM) method to determine the binding forces between a model cell wall plasma membrane and Vibrio cholerae. V. cholerae cells were covalently attached to AFM probes and forces were determined against a lipid bilayer containing sialic acid (N-acetylneuraminic acid) molecules as well as several control surfaces.  相似文献   

18.
AimsHuman plasma lipoproteins are known to contain various glycan structures whose composition and functional importance are starting to be recognized. We assessed N-glycosylation of human plasma HDL and LDL and the role of their glycomes in cellular cholesterol metabolism.MethodsN-glycomic profiles of native and neuraminidase-treated HDL and LDL were obtained using HILIC-UHPLC-FLD. Relative abundance of the individual chromatographic peaks was quantitatively expressed as a percentage of total integrated area and N-glycan structures present in each peak were elucidated by MALDI-TOF MS. The capacity of HDL to mediate cellular efflux of cholesterol and the capacity of LDL to induce cellular accumulation of cholesteryl esters were evaluated in THP-1 cells.ResultsHILIC-UHPLC-FLD analysis of HDL and LDL N-glycans released by PNGase F resulted in 22 and 18 distinct chromatographic peaks, respectively. The majority of N-glycans present in HDL (~70%) and LDL (~60%) were sialylated with one or two sialic acid residues. The most abundant N-glycan structure in both HDL and LDL was a complex type biantennary N-glycan with one sialic acid (A2G2S1). Relative abundances of several N-glycan structures were dramatically altered by the neuraminidase treatment, which selectively removed sialic acid residues. Native HDL displayed significantly greater efficacy in removing cellular cholesterol from THP-1 cells as compared to desialylated HDL (p < 0.05). Cellular accumulation of cholesteryl esters in THP-1 cells was significantly higher after incubations with desialylated LDL particles as compared to native LDL (p < 0.05).ConclusionsN-glycome of human plasma lipoproteins reveals a high level of diversity, which directly impacts functional properties of the lipoproteins.  相似文献   

19.
In Ramos cells, a human Burkitt's lymphoma cell line, stimulation of the B cell antigen receptor with anti-IgM antibody (Ab) induces apoptosis as indicated by a decrease in cell viability and an increase in DNA fragmentation and cell surface exposure of phosphatidylserine. Furthermore, these changes are suppressed by incubating the cells in α1-acid glycoprotein (AGP)-coated tissue culture plates. Here, we found that, during Anti-IgM Ab-induced apoptosis in Ramos cells, caspase-3 is activated downstream of caspase-8 and the mitochondrial pathway is activated, as indicated by a loss of mitochondrial membrane potential, an increase in the release of cytochrome c to the cytoplasm, and enhanced Bax expression. Anti-IgM Ab-induced apoptosis of neuraminidase-treated Ramos cells was suppressed by incubating the cells on plates coated with AGP, which contains a high concentration of α2,6-linked sialic acid. The incubation on plates coated with AGP also suppressed anti-IgM Ab-stimulated caspase-3 activity and increased the level of X-linked inhibitor of apoptosis protein (XIAP), but it did not affect caspase-8 activity, the mitochondrial membrane potential, cytochrome c release, or Bax expression. The results indicate that the interaction of Ramos cells with immobilized α2,6-linked sialic acid enhances XIAP expression, directly or indirectly suppressing caspase-3 activity and inhibiting anti-IgM Ab-induced apoptosis.  相似文献   

20.
The response of guanylate cyclase to addition of extracellular stimuli is well documented. Here we report for the first time the response of guanylate cyclase to removal of stimuli. Three methods were employed to terminate rapidly a stimulus of folic acid. (1) Addition of a highly active folate deaminase preparation, or (2) 12-fold dilution of the stimulated cell suspension, or (3) addition of an excess concentration of a non-agonistic derivative of folic acid, i.e., 2-deaminofolic acid, which chases the folate agonist from its cell-surface receptors. Accumulation of cGMP terminated instantaneously upon addition of deaminase, but degradation of the synthesized cGMP was not observed until 10–12 s after stimulation. Also in a cGMP phosphodiesterase-lacking ‘streamer’ mutant an instantaneous termination of further cGMP accumulation was observed upon stimulus removal. This suggests that the termination of cGMP accumulation is due to inactivation of guanylate cyclase instead of a steady state of cGMP synthesis and degradation. Further accumulation of cGMP was approx. 75% reduced upon dilution of a cell suspension after stimulation with both agonists. Stimulation by 300 nM folic acid or by 30 nM N10-methylfolic acid (a more potent agonist) yielded identical results. However, upon addition of deaminofolic acid the accumulation of cGMP continued normally if the cells had been stimulated with N10-methylfolic acid, but only slightly in the case of a folic acid stimulus. The effect of stimulus duration on desensitization was monitored; it was observed that 50% desensitization was induced by stimulation for 1 s, while 4 s was sufficient for maximal desensitization. Short stimuli were observed to elicit high levels of desensitization without much excitation of guanylate cyclase. A desensitization-like process was observed at the level of the folate-binding chemotactic receptors as well. Relationships between the cGMP response data and folic acid receptor kinetics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号