首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective tissue engineering requires appropriate selection of cells and scaffold, where the latter serves as a mechanical and biological support for cell growth and functionality. The optimal combination of cell source and scaffold properties can vary for each desired application. Such preconditions necessitate enhanced understanding of the interactions between cells and scaffold within engineered tissue. Several studies have examined the deforming effects cells induce in scaffolds via exertion of contractile forces. In contrast, other studies focus on the scaffold's biochemical and mechanical properties and their effects on cell behavior.This review summarizes the mechanical interplay between cells and scaffold within engineered tissue. We present evidence for contractile forces exerted by cells on three-dimensional (3D) scaffolds and discuss existing methods for their quantification. In addition, we address some theories related to the effects of scaffold stiffness and mechanical stimulation on cell behavior. Further understanding of the reciprocal effects between cells and scaffold will provide both enhanced knowledge regarding the expected properties of engineered tissue and more competent tissue regeneration techniques.  相似文献   

2.
Dekanty A  Milán M 《EMBO reports》2011,12(10):1003-1010
Morphogens are conserved, secreted signalling molecules that regulate the size, shape and patterning of animal tissues and organs. Recent experimental evidence has emphasized the fundamental role of tissue growth in expanding the expression domains of morphogens and their target genes, in generating morphogen gradients and in modulating the response of cells to morphogens. Moreover, the classic view of how morphogens, particularly through their concentration gradient, regulate tissue size during development has been revisited recently. In this review, we discuss how morphogens and tissue growth affect each other, and we attempt to integrate genetic and molecular evidence from vertebrate and invertebrate model systems to put forward the idea that the interaction between growth and morphogens is a general feature of highly proliferative tissues.  相似文献   

3.
Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)-collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5 min to a peak strain of 2.4%, for 8 h/day for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048+/-0.009 versus 0.015+/-0.004; mean+/-SEM (standard error of the mean ) N/mm) and linear modulus (0.016+/-0.004 versus 0.005+/-0.001; mean+/-SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.  相似文献   

4.
Schmidt M  de Lorenzo V 《FEBS letters》2012,586(15):2199-2206
The plausible release of deeply engineered or even entirely synthetic/artificial microorganisms raises the issue of their intentional (e.g. bioremediation) or accidental interaction with the Environment. Containment systems designed in the 1980s-1990s for limiting the spread of genetically engineered bacteria and their recombinant traits are still applicable to contemporary Synthetic Biology constructs. Yet, the ease of DNA synthesis and the uncertainty on how non-natural properties and strains could interplay with the existing biological word poses yet again the challenge of designing safe and efficacious firewalls to curtail possible interactions. Such barriers may include xeno-nucleic acids (XNAs) instead of DNA as information-bearing molecules, rewriting the genetic code to make it non-understandable by the existing gene expression machineries, and/or making growth dependent on xenobiotic chemicals.  相似文献   

5.
Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling.  相似文献   

6.
Toward developing biologically sound models for the study of heart regeneration and disease, we cultured heart cells on a biodegradable, microfabricated poly(glycerol sebacate) (PGS) scaffold designed with micro-structural features and anisotropic mechanical properties to promote cardiac-like tissue architecture. Using this biomimetic system, we studied individual and combined effects of supplemental insulin-like growth factor-1 (IGF-1) and electrical stimulation (ES). On culture day 8, all tissue constructs could be paced and expressed the cardiac protein troponin-T. IGF-1 reduced apoptosis, promoted cell-to-cell connectivity, and lowered excitation threshold, an index of electrophysiological activity. ES promoted formation of tissue-like bundles oriented in parallel to the electrical field and a more than ten-fold increase in matrix metalloprotease-2 (MMP-2) gene expression. The combination of IGF-1 and ES increased 2D projection length, an index of overall contraction strength, and enhanced expression of the gap junction protein connexin-43 and sarcomere development. This culture environment, designed to combine cardiac-like scaffold architecture and biomechanics with molecular and biophysical signals, enabled functional assembly of engineered heart muscle from dissociated cells and could serve as a template for future studies on the hierarchy of various signaling domains relative to cardiac tissue development.  相似文献   

7.
Due to the increasing number of heart valve diseases, there is an urgent clinical need for off-the-shelf tissue engineered heart valves. While significant progress has been made toward improving the design and performance of both mechanical and tissue engineered heart valves (TEHVs), a human implantable, functional, and viable TEHV has remained elusive. In animal studies so far, the implanted TEHVs have failed to survive more than a few months after transplantation due to insufficient mechanical properties. Therefore, the success of future heart valve tissue engineering approaches depends on the ability of the TEHV to mimic and maintain the functional and mechanical properties of the native heart valves. However, aside from some tensile quasistatic data and flexural or bending properties, detailed mechanical properties such as dynamic fatigue, creep behavior, and viscoelastic properties of heart valves are still poorly understood. The need for better understanding and more detailed characterization of mechanical properties of tissue engineered, as well as native heart valve constructs is thus evident. In the current review we aim to present an overview of the current understanding of the mechanical properties of human and common animal model heart valves. The relevant data on both native and tissue engineered heart valve constructs have been compiled and analyzed to help in defining the target ranges for mechanical properties of TEHV constructs, particularly for the aortic and the pulmonary valves. We conclude with a summary of perspectives on the future work on better understanding of the mechanical properties of TEHV constructs.  相似文献   

8.
This study investigated the hypothesis that dynamic compression loading enhances tissue formation and increases mechanical properties of anatomically shaped tissue engineered menisci. Bovine meniscal fibrochondrocytes were seeded in 2%w/v alginate, crosslinked with CaSO(4), injected into μCT based molds, and post crosslinked with CaCl(2). Samples were loaded via a custom bioreactor with loading platens specifically designed to load anatomically shaped constructs in unconfined compression. Based on the results of finite element simulations, constructs were loaded under sinusoidal displacement to yield physiological strain levels. Constructs were loaded 3 times a week for 1 h followed by 1 h of rest and loaded again for 1 h. Constructs were dynamically loaded for up to 6 weeks. After 2 weeks of culture, loaded samples had 2-3.2 fold increases in the extracellular matrix (ECM) content and 1.8-2.5 fold increases in the compressive modulus compared with static controls. After 6 weeks of loading, glycosaminoglycan (GAG) content and compressive modulus both decreased compared with 2 week cultures by 2.3-2.7 and 1.5-1.7 fold, respectively, whereas collagen content increased by 1.8-2.2 fold. Prolonged loading of engineered constructs could have altered alginate scaffold degradation rate and/or initiated a catabolic cellular response, indicated by significantly decreased ECM retention at 6 weeks compared with 2 weeks. However, the data indicates that dynamic loading had a strikingly positive effect on ECM accumulation and mechanical properties in short term culture.  相似文献   

9.
The protein design rules for engineering allosteric regulation are not well understood. A fundamental understanding of the determinants of ligand binding in an allosteric context could facilitate the design and construction of versatile protein switches and biosensors. Here, we conducted extensive in vitro and in vivo characterization of the effects of 285 unique point mutations at 15 residues in the maltose‐binding pocket of the maltose‐activated β‐lactamase MBP317‐347. MBP317‐347 is an allosteric enzyme formed by the insertion of TEM‐1 β‐lactamase into the E. coli maltose binding protein (MBP). We find that the maltose‐dependent resistance to ampicillin conferred to the cells by the MBP317‐347 switch gene (the switch phenotype) is very robust to mutations, with most mutations slightly improving the switch phenotype. We identified 15 mutations that improved switch performance from twofold to 22‐fold, primarily by decreasing the catalytic activity in the absence of maltose, perhaps by disrupting interactions that cause a small fraction of MBP in solution to exist in a partially closed state in the absence of maltose. Other notable mutations include K15D and K15H that increased maltose affinity 30‐fold and Y155K and Y155R that compromised switching by diminishing the ability of maltose to increase catalytic activity. The data also provided insights into normal MBP physiology, as select mutations at D14, W62, and F156 retained high maltose affinity but abolished the switch's ability to substitute for MBP in the transport of maltose into the cell. The results reveal the complex relationship between ligand binding and allostery in this engineered switch.  相似文献   

10.
11.
Long term cryopreservation of tissue engineering constructs is of paramount importance to meet off-the shelf requirements for medical applications. In the present study, the effect of cryopreservation using natural osmolytes such as trehalose and ectoin with and without conventional Me2SO on the cryopreservation of tissue engineered constructs (TECs) was evaluated. MSCs derived from umbilical cord were seeded on electrospun nanofibrous silk fibroin scaffolds and cultured to develop TECs. TECs were subjected to controlled rate freezing using nine different freezing solutions. Among these, freezing medium consisting of natural osmolytes like trehalose (40 mM), ectoin (40 mM), catalase (100 μg) as antioxidant and Me2SO (2.5%) was found to be the most effective. Optimality of the chosen cryoprotectants was confirmed by cell viability (PI live/dead staining), cell proliferation (MTT assay), microstructure analysis (SEM), membrane integrity (confocal microscopy) and in vitro osteogenic differentiation (ALP assay, RT-PCR and histology) study carried out with post-thaw cryopreserved TECs. The mechanical integrity of the cryopreserved scaffold was found to be unaltered.  相似文献   

12.
In this article, we describe an approach to generate microporous cell‐laden hydrogels for fabricating biomimetic tissue engineered constructs. Micropores at different length scales were fabricated in cell‐laden hydrogels by micromolding fluidic channels and leaching sucrose crystals. Microengineered channels were created within cell‐laden hydrogel precursors containing agarose solution mixed with sucrose crystals. The rapid cooling of the agarose solution was used to gel the solution and form micropores in place of the sucrose crystals. The sucrose leaching process generated homogeneously distributed micropores within the gels, while enabling the direct immobilization of cells within the gels. We also characterized the physical, mechanical, and biological properties (i.e., microporosity, diffusivity, and cell viability) of cell‐laden agarose gels as a function of engineered porosity. The microporosity was controlled from 0% to 40% and the diffusivity of molecules in the porous agarose gels increased as compared to controls. Furthermore, the viability of human hepatic carcinoma cells that were cultured in microporous agarose gels corresponded to the diffusion profile generated away from the microchannels. Based on their enhanced diffusive properties, microporous cell‐laden hydrogels containing a microengineered fluidic channel can be a useful tool for generating tissue structures for regenerative medicine and drug discovery applications. Biotechnol. Bioeng. 2010; 106: 138–148. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
The tensile strength and stiffness of load-bearing soft tissues are dominated by their collagen fiber orientation. While microgrooved substrates have demonstrated a capacity to orient cells and collagen in monolayer tissue culture, tissue engineering (TE) scaffolds are structurally distinct in that they consist of a three-dimensional (3-D) open pore network. It is thus unclear how the geometry of these open pores might influence cell and collagen orientation. In the current study we developed an in vitro model system for quantifying the capacity of large scale ( approximately 200 microm), geometrically well-defined open pores to guide cell and collagen orientation in engineered tissues. Non-degradable scaffolds exhibiting a grid of 200 microm wide rectangular pores (1:1, 2:1, 5:1, and 10:1 aspect ratios) were fabricated from a transparent epoxy resin via high-resolution stereolithography. The scaffolds (n=6 per aspect ratio) were surface modified to support cell adhesion by covalently grafting GRGDS peptides, sterilized, and seeded with neonatal rat skin fibroblasts. Following 4 weeks of static incubation, the resultant collagen orientation was assessed quantitatively by small angle light scattering (SALS), and cell orientation was evaluated by laser confocal and scanning electron microscopy. Cells adhered to the struts of the pores and proceeded to span the pores in a generally circumferential pattern. While the cell and collagen orientations within 1:1 aspect ratio pores were effectively random, higher aspect ratio rectangular pores exhibited a significant capacity to guide global cell and collagen orientation. Preferential alignment parallel to the long strut axis and decreased spatial variability were observed to occur with increasing pore aspect ratio. Intra-pore variability depended in part on the spatial uniformity of cell attachment around the perimeter of each pore achieved during seeding. Evaluation of diamond-shaped pores [Sacks, M.S. et al., 1997. J. Biomech. Eng. 119(1), 124-127] suggests that they are less sensitive to initial conditions of cell attachment than rectangular pores, and thus more effective in guiding engineered tissue cell and collagen orientation.  相似文献   

14.
A multilevel finite element approach is applied to predict local cell deformations in engineered tissue constructs. Cell deformations are predicted from detailed nonlinear FE analysis of the microstructure, consisting of an arrangement of cells embedded in matrix material. Effective macroscopic tissue behavior is derived by a computational homogenization procedure. To illustrate this approach, we simulated the compression of a skeletal muscle tissue construct and studied the influence of microstructural heterogeneity on local cell deformations. Results show that heterogeneity has a profound impact on local cell deformations, which highly exceed macroscopic deformations. Moreover, microstructural heterogeneity and the presence of neighboring cells leads to complex cell shapes and causes non-uniform deformations within a cell.  相似文献   

15.
During organ development and remodeling, macrophages support angiogenesis, not only by secreting proangiogenic growth factors and matrix-remodeling proteases, but also by physically interacting with the sprouting vasculature to assist the formation of complex vascular networks. Recent data further indicate that embryonic and tumor-associated macrophages express similar genetic programs, possibly suggesting convergent functions in organogenesis and tumorigenesis. In this article, we review the role of macrophages in development, tissue injury and regeneration, by focusing on the mechanisms used by subsets of these cells, such as the TIE2-expressing macrophages, to regulate angiogenesis and lymphangiogenesis in both fetal and post-natal life.  相似文献   

16.

Cell proliferation within a fluid-filled porous tissue-engineering scaffold depends on a sensitive choice of pore geometry and flow rates: regions of high curvature encourage cell proliferation, while a critical flow rate is required to promote growth for certain cell types. When the flow rate is too slow, the nutrient supply is limited; when it is too fast, cells may be damaged by the high fluid shear stress. As a result, determining appropriate tissue-engineering-construct geometries and operating regimes poses a significant challenge that cannot be addressed by experimentation alone. In this paper, we present a mathematical theory for the fluid flow within a pore of a tissue-engineering scaffold, which is coupled to the growth of cells on the pore walls. We exploit the slenderness of a pore that is typical in such a scenario, to derive a reduced model that enables a comprehensive analysis of the system to be performed. We derive analytical solutions in a particular case of a nearly piecewise constant growth law and compare these with numerical solutions of the reduced model. Qualitative comparisons of tissue morphologies predicted by our model, with those observed experimentally, are also made. We demonstrate how the simplified system may be used to make predictions on the design of a tissue-engineering scaffold and the appropriate operating regime that ensures a desired level of tissue growth.

  相似文献   

17.
The authors have previously described a model of in vivo tissue generation based on an implanted, microsurgically created vessel loop in a plastic chamber (volume, 0.45 ml) containing a poly(DL-lactic-co-glycolic acid) (PLGA) scaffold. Tissue grew spontaneously in association with an intense angiogenic sprouting from the loop and almost filled the chamber, resulting in a mean amount of tissue in chambers of 0.23 g with no added matrix scaffold and 0.33 g of tissue in PLGA-filled chambers after 4 weeks of incubation. The aim of the present study was to investigate whether a greater volume of tissue could be generated when the same-size vessel loop was inserted into a larger (1.9 ml) chamber. In four groups of five rats, an arteriovenous shunt sandwiched between two disks of PLGA, used as a scaffold for structural support, was placed inside a large polycarbonate growth chamber. Tissue and PLGA weight and volume, as well as histological characteristics of the newly formed tissue, were assessed at 2, 4, 6, and 8 weeks. Tissue weight and volume showed a strong linear correlation. Tissue weight increased progressively from 0.13 +/- 0.04 g at 2 weeks to 0.57 +/- 0.06 g at 6 weeks (p < 0.0005). PLGA weight decreased progressively from 0.89 +/- 0.07 g at 2 weeks to 0.20 +/- 0.09 g at 8 weeks (p < 0.0005). Histological examination of the specimens confirmed increased tissue growth and maturation over time. It is concluded that larger quantities of tissue can be grown over a longer period of time by using larger-size growth chambers.  相似文献   

18.
Noninvasive in vivo monitoring of tissue implants provides important correlations between construct function and the observed physiologic effects. As oxygen is a key parameter affecting cell and tissue function, we established a monitoring method that utilizes 19F nuclear magnetic resonance (NMR) spectroscopy, with perfluorocarbons (PFCs) as oxygen concentration markers, to noninvasively monitor dissolved oxygen concentration (DO) in tissue engineered implants. Specifically, we developed a dual PFC method capable of simultaneously measuring DO within a tissue construct and its surrounding environment, as the latter varies among animals and with physiologic conditions. In vitro studies using an NMR‐compatible bioreactor demonstrated the feasibility of this method to monitor the DO within alginate beads containing metabolically active murine insulinoma βTC‐tet cells, relative to the DO in the culture medium, under perfusion and static conditions. The DO profiles obtained under static conditions were supported by mathematical simulations of the system. In vivo, the dual PFC method was successful in tracking the oxygenation state of entrapped βTC‐tet cells and the surrounding peritoneal DO over 16 days in normal mice. DO measurements correlated well with the extent of cell growth and host cell attachment examined postexplantation. The peritoneal oxygen environment was found to be variable and hypoxic, and significantly lower in the presence of metabolically active cells. The significance of the dual PFC system in providing critical DO measurements for entrapped cells and other tissue constructs, in vitro and in vivo, is discussed. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

19.
Our laboratory has previously developed scaffoldless engineered bone constructs (EBC). Bone marrow stromal cells (BMSC) were harvested from rat femur and cultured in medium that induced osteogenic differentiation. After reaching confluence, the monolayer of cells contracted around two constraint points forming a cylinder. EBCs were placed in small diameter (0.5905 × 0.0625 in.) or large diameter (0.5905 × 0.125 in.) silicone tubing and implanted intramuscularly in the hind limb of a rat. Bone mineral content (BMC) of the EBC was analyzed before implantation and at 1 and 2 mo following implantation and compared to that of native femur bone at different stages of development. Negligible BMC was observed in E-20 femur or EBCs prior to implantation. One-month implantation in both small and large tubing increased BMC in the EBC. BMC of EBC from large tubing was greater than in 14 d rat neonatal femurs, but was 2% and 3% of BMC content in adult bone after 1 and 2 mo of implantation, respectively. Alizarine Red and osteopontin staining of the EBCs before and after implantation confirmed increased bone mineralization in the implanted EBCs. Implanted EBCs also had extensive vascularization. Our data suggest that BMSC can be successfully used for the generation of scaffoldless EBC, and this model can be potentially used for the generation of autologous bone transplants in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号