首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Epstein-Barr virus (EBV) genomes persist indefinitely in latently infected human cells, in part due to their ability to stably segregate during cell division. This process is mediated by the viral EBNA1 protein, which tethers the viral episomes to the cellular mitotic chromosomes. We have previously identified a mitotic chromosomal protein, human EBNA1 binding protein 2 (hEBP2), which binds to EBNA1 and enables EBNA1 to partition EBV-based plasmids in Saccharomyces cerevisiae. Using an RNA silencing approach, we show that hEBP2 is essential for the proliferation of human cells and that repression of hEBP2 severely decreases the ability of EBNA1 and EBV-based plasmids to bind mitotic chromosomes. When expressed in yeast, hEBP2 undergoes the same cell cycle-regulated association with the mitotic chromatin as in human cells, and using yeast temperature-sensitive mutant strains, we found that the attachment of hEBP2 to mitotic chromosomes was dependent on the Ipl1 kinase. Both RNA silencing of the Ipl1 orthologue in human cells (Aurora B) and specific inhibition of the Aurora B kinase activity with a small molecule confirmed a role for this kinase in enabling hEBP2 binding to human mitotic chromosomes, suggesting that this kinase can regulate EBV segregation.  相似文献   

3.
4.
Specific inhibition of gene expression by exogenous homologous double-stranded RNA (dsRNA) in invertebrates and in the early development of vertebrates is termed RNA interference. Cultured cells were cotransfected with reporter plasmids and dsRNA. The inhibitory effect on reporter gene expression depended on the extent of homology between dsRNA and the target gene. RNA interference was also studied in cells cotransfected with plasmids directing synthesis of sense and antisense RNAs. Production of antisense RNA only slightly inhibited expression of the reporter gene. Simultaneous expression of both sense and antisense RNAs caused by cotransfection by corresponding plasmids did not inhibit expression of the reporter construct.  相似文献   

5.
6.
Specific inhibition of gene expression by exogenous homologous double-stranded RNA (dsRNA) in invertebrates and in the early development of vertebrates is termed RNA interference. Cultured cells were cotransfected with reporter plasmids and dsRNA. The inhibitor effect on reporter gene expression depended on the extent of homology between dsRNA and the target gene. RNA interference was also studied in cells cotransfected with plasmids directing synthesis of sense and antisense RNAs. Production of antisense RNA only slightly inhibited expression of the reporter gene. Simultaneous expression of both sense and antisense RNAs from a special plasmid did not inhibit expression of the reporter construct.  相似文献   

7.
8.
It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression–particularly in relation to histone modifications and cell factors involved–the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of repressing COBLL1 or ADAM28/ADAMDEC1 in newly infected primary B cells.  相似文献   

9.
10.
11.
Trypanosomatid protozoa lack consensus promoters for RNA polymerase (RNAP) II. However, the artificial insertion of the T7 promoter (P(T7)) and the tetracycline repressor into Trypanosoma brucei cell lines expressing T7RNAP allows P(T7)-driven gene expression to be tetracycline-inducible. These cell lines provide a molecular tool to address protein function by several recombinant approaches. We describe here the development of an analogous Leishmania chagasi cell line bearing the genes for exogenous T7RNAP and the tetracycline repressor inserted in the multi-gene alpha-tubulin locus. A plasmid construct with P(T7) and the tetracycline operator upstream of a reporter gene, when introduced into this cell line as episomal plasmids or chromosomal insertion into the non-coding strand of an 18SrRNA gene, resulted in tetracycline-inducible expression of the reporter as much as 16- and 150-fold, respectively. The reporter was under a much tighter control when chromosomally inserted than extra-chromosomally born. Furthermore, P(T7) augmented the reporter's expression 2-fold more in comparison to P(T7)-less constructs. This cell line is the first Leishmania spp. that allows the exogenous T7RNAP-driven gene expression to be tetracycline-inducible; and may provide a useful tool for addressing protein function by manipulating expression levels of Leishmania endogenous genes.  相似文献   

12.
The phosphorodiamidate Morpholino oligomers (PMO) are a new class of antisense agents that inhibit gene expression by binding to RNA and sterically blocking processing or translation. In a search for a Morpholino agent that would inhibit cell proliferation, it was found that oligomers directed against c-myc, a gene involved in control of the cell cycle, were effective. The sequence specificity and mechanism of action of one agent were determined. The 20-mer 126 lowers c-myc protein levels in treated cells and arrests cells in G0/G1 of the cell cycle. It also acts at the RNA level to inhibit normal pre-mRNA splicing and instead produces an aberrantly spliced mRNA. Irrelevant and mispair control oligomers indicated that the observed antiproliferative effect was sequence specific. This was confirmed in a reporter gene model system using a c-myc 5'-untranslated region (5'-UTR) fused to a cDNA copy of the insect luciferase gene. We conclude that 126 is acting through an antisense mechanism involving Watson-Crick hydrogen bonding to its target RNA. A specific antisense agent directed against a cell cycle-associated gene mRNA may be useful as a therapeutic in diseases characterized by excess cell proliferation, such as restenosis following balloon angioplasty or cancer.  相似文献   

13.
14.
We describe an efficient inducible gene expression system in HEK.EBNA cells, a well-established cell system for the rapid transient expression of research-tool proteins. The transgene control system of choice is the novel acetaldehyde-inducible regulation (AIR) technology, which has been shown to modulate transgene levels following exposure of cells to acetaldehyde. For application in HEK.EBNA cells, AlcR transactivator plasmids were constructed and co-expressed with the secreted alkaline phosphatase (SEAP) gene under the control of a chimeric mammalian promoter (P(AIR)) for acetaldehyde-regulated expression. Several highly inducible transactivator cell lines were established. Adjustable transgene induction by gaseous acetaldehyde led to high induction levels and tight repression in transient expression trials and in stably transfected HEK.EBNA cell lines. Thus, the AIR technology can be used for inducible expression of any desired recombinant protein in HEK.EBNA cells. A possible application for inducible gene expression is a controlled proliferation strategy. Clonal HEK.EBNA cell lines, expressing the fungal transactivator protein AlcR, were engineered for gas-adjustable expression of the cell-cycle regulator p27(Kip1). We show that expression of p27(Kip1) via transient or stable transfection led to a G1-phase specific growth arrest of HEK.EBNA cells. Furthermore, production pools engineered for gas-adjustable expression of p27(Kip1) and constitutive expression of SEAP showed enhanced productive capacity.  相似文献   

15.
Most mitochondrial mRNAs are edited in Trypano soma brucei by a series of steps that are catalyzed by a multienzyme complex that is in its initial stages of characterization. RNA interference (RNAi)-mediated repression of the expression of TbMP81, a zinc finger protein component of the complex, inhibited growth of bloodstream and insect forms, and blocked in vivo RNA editing. This repression preferentially inhibited insertion editing compared with deletion editing in vitro. It resulted in reduced specific endoribonucleolytic cleavage and a greater reduction of U addition and associated RNA ligation activities than U removal and associated RNA ligation activities. The repressed cells retained 20S editing complexes with several demonstrable proteins and adenylatable TbMP52 RNA ligase, but adenlyatable TbMP48 was not detected. Elimination of TbMP48 by RNAi repression did not inhibit cell growth or in vivo editing in either bloodstream or procyclic forms. These results indicate that TbMP81 is required for RNA editing and suggest that the editing complex is functionally partitioned.  相似文献   

16.
Epstein-Barr virus (EBV) latency gene expression in lymphoblastoid cell lines is regulated by EBNA2. However, the factors regulating viral expression in EBV-associated tumors that do not express EBNA2 are poorly understood. In EBV-associated tumors, EBNA1 and frequently LMP1 are synthesized. We found that an alternative latent membrane protein 1 (LMP1) promoter, L1-TR, located within the terminal repeats is active in both nasopharyngeal carcinoma and Hodgkin's disease tissues. Examination of the L1-TR and the standard ED-L1 LMP1 promoters in electrophoretic mobility shift assays revealed that both promoters contain functional STAT binding sites. Further, both LMP1 promoters responded in reporter assays to activation of JAK-STAT signaling. Cotransfection of JAK1 or v-Src or treatment of cells with the cytokine interleukin-6 upregulated expression from ED-L1 and L1-TR reporter plasmids. Cotransfection of a dominant negative STAT3 beta revealed that STAT3 is likely to be the biologically relevant STAT for EBNA1 Qp and LMP1 L1-TR promoter regulation. In contrast, LMP1 expression from ED-L1 was not abrogated by STAT3 beta, indicating that the two LMP1 promoters are regulated by different STAT family members. Taken together with the previous demonstration of JAK-STAT activation of Qp driven EBNA1 expression, this places two of the EBV genes most commonly expressed in tumors under the control of the same signal transduction pathway. Immunohistochemical analyses of nasopharyngeal carcinoma tumors revealed that STAT3, STAT5, and STAT1 are constitutively activated in these tumors while STAT3 is constitutively activated in the malignant cells of Hodgkin's disease. We hypothesize that chronic or aberrant STAT activation may be both a necessary and predisposing event for EBV-driven tumorigenesis in immunocompetent individuals.  相似文献   

17.
18.
Basic fibroblast growth factor (bFGF) is a mitogenic factor that is implicated in smooth muscle cell growth in atherosclerosis and vascular restenosis. In this study, we examined the effect of bFGF on the expression of the interstitial collagenase gene in human vascular smooth muscle cells. Results from Northern transfer analysis showed that bFGF increased collagenase mRNA levels greater than threefold as early as 24 h. Collagenase pre-mRNA levels were elevated approximately threefold by bFGF, according to RT-PCR analysis. Transient transfections of the smooth muscle cells with a 4.4-kb human collagenase promoter-CAT reporter gene, however, failed to show upregulation of the promoter activity by bFGF. Interestingly, transfections with deleted fragments containing promoter sequences from -1047 to -2271 resulted in modest stimulation of the collagenase-CAT promoter activity by bFGF. bFGF did not alter the stability of the collagenase mRNA, as demonstrated by degradation studies. The enhanced collagenase mRNA levels elicited by bFGF were reflected in increased amounts of collagenase protein that were detected by Western blot analysis. In summary, bFGF upregulates the interstitial collagenase expression, resulting in turnover of the extracellular matrix, an event that could facilitate smooth muscle cell migration and proliferation during the early stages of atherosclerosis and restenosis. J. Cell. Biochem. 65:32–41. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Metazoan replication-dependent histone mRNAs are the only eukaryotic mRNAs that are not polyadenylated. The cleavage of histone pre-mRNA to form the unique 3' end requires the U7 snRNP and the stem-loop binding protein (SLBP) that binds the 3' end of histone mRNA. U7 snRNP contains three novel proteins, Lsm10 and Lsm11, which are part of the core U7 Sm complex, and ZFP100, a Zn finger protein that helps stabilize binding of the U7 snRNP to the histone pre-mRNA by interacting with the SLBP/pre-mRNA complex. Using a reporter gene that encodes a green fluorescent protein mRNA ending in a histone 3' end and mimics histone gene expression, we demonstrate that ZFP100 is the limiting factor for histone pre-mRNA processing in vivo. The overexpression of Lsm10 and Lsm11 increases the cellular levels of U7 snRNP but has no effect on histone pre-mRNA processing, while increasing the amount of ZFP100 increases histone pre-mRNA processing but has no effect on U7 snRNP levels. We also show that knocking down the known components of U7 snRNP by RNA interference results in a reduction in cell growth and an unsuspected cell cycle arrest in early G(1), suggesting that active U7 snRNP is necessary to allow progression through G(1) phase to S phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号