首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriorhodopsin and the nicotinic acetylcholine receptor were biotinylated and reconstituted in lipidic membranes on silicon supports by fusion with proteoliposomes. The presence and distribution of the proteins were studied by binding with streptavidin. Radio-labelled streptavidin was employed for quantifying the amounts of protein remaining in the supported membranes after storage in buffer. The proteins within the membranes remained bound to the surface for weeks. The biological activity of reconstituted unlabelled receptor upon storage showed stability in membranes formed on silicon supports and a reduced stability when formed onto lipid monolayer covered supports. Atomic force microscopy studies on preparations in liquid showed bilayer structures but also attached, partly fused liposomes and membrane particles. In air, the surface was smoother and contained less of liposomes and more of stacked lipid layers. Preparations labelled with streptavidin conjugated to colloidal gold and imaged in air showed the proteins individually distributed, with no protein-rich patches or protein aggregates.  相似文献   

2.
Interactions between the nicotinic acetylcholine receptor (nAChR) and phosphatidic acid (PA) are bidirectional in that membranes containing PA are effective at stabilizing an agonist-responsive nAChR, whereas incorporation of the nAChR into the same membranes leads to a substantial increase in lipid lateral packing density. A previous study suggested that the ability of PA to adopt a dianionic ionization state is key. We monitored the ionization state of PA in both reconstituted and protein-free membranes. In model membranes composed of PA and 3:2 (mol/mol) phosphatidylcholine (PC)/PA, the monoanionic-to-dianionic transition of PA was detected with a pKa of 8.7 and 6.5, respectively. In the reconstituted 3:2 PC/PA membranes, however, PA was stabilized in a monoanionic state at pH values up to 10. Although dianionic PA does not play a role in nAChR function, we found that both the stabilization of monoanionic PA and the concentration of other cations at the bilayer surface can account for changes in bilayer physical properties that are observed upon incorporation of the nAChR into 3:2 PC/PA membranes. A nAChR-induced concentration of cations at the bilayer surface likely mediates interactions between the nAChR and the anionic lipids in its membrane environment.  相似文献   

3.
Expression of S protein, an envelope protein of hepatitis B virus, in the absence of other viral proteins, leads to the secretion of hepatitis B virus surface antigen (HBsAg) particles that are formed by budding from the endoplasmic reticulum membranes. The HBsAg particles produced by mouse fibroblast cells show a unique lipid composition, with 1,2-diacyl glycerophosphocholine being the dominant component. The lipid organization of the HBsAg particles was studied by measuring electron spin resonance (ESR) using various spin-labeled fatty acids, and the results were compared with a parallel study on HVJ (Sendai virus) and vesicles reconstituted with total lipids of the HBsAg particles (HBs-lipid vesicles). HVJ and the HBs-lipid vesicles showed typical ESR spectra of lipids arranged in a lipid bilayer structure. In contrast, the ESR spectra obtained with the HBsAg particles showed that the movement of lipids in the particle is severely restricted and a typical immobilized signal characteristic of tight lipid-protein interactions was also evident. Phosphatidylcholine (PC) in the HBsAg particles was not exchangeable by a PC-specific exchange protein purified from bovine liver, while phospholipase A(2) from Naja naja vemon was able to hydrolyze all the PC in the particles. These analyses suggest that the lipids in the HBsAg particles are not organized in a typical lipid bilayer structure, but are located at the surface of the particles and are in a highly immobilized state. Based on these observations we propose a unique lipid assembly and membrane structure model for HBsAg particles.  相似文献   

4.
Abstract

Liposomal hepatitis B vaccine was prepared by encapsulating recombinant 22-nm hepatitis B surface antigen (HBsAg) particles derived from a Chinese hamster ovary (CHO) cell line in multilammelar lipid vesicles (MLV) composed of 9:1 dimyristoyl phosphatidyl-choline/dimyristoyl phosphatidylglycerol. The CHO-derived HBsAg particles reveal 6 bands in polyacrylamide gel electrophoresis related to the presence of 3 peptides (S, M, & L). Four different methods were used to prepare the MLV vaccine, each resulting in freeze-dried powder which upon hydration gave MLV of a similar mean size, 4.5 μm. The humoral response to these 4 liposomal vaccines in mice was dependent on the method of preparation, but for all of them it was better than the response to alum-based vaccine (especially at a low dose of antigen). Comparison of vaccination using “naked” HBsAg particles, particles adsorbed to alum, and particles encapsulated in liposomes demonstrated that at low dose of antigen the liposomal vaccine was superior in eliciting humoral response. Encapsulation in liposomes did not improve specific cytotoxic T lymphocyte (CTL) response. The alum in the vaccine completely eliminates CTL response, though it improved the humoral response by increasing the linear range in the antigen dose-response curve (increasing the antibody titer at high antigen dose). A similar response profile was obtained with recombinant yeast (Hansenula) 22-nm particles composed of a single non-glycosylated (p24) peptide and lipids. The similarity in the response to the mammalian cell and yeast derived vaccine suggests that the physical nature of the vaccine, more than the exact composition, determines the balance between humoral and CTL responses.  相似文献   

5.
A detailed methodology is presented of two reconstitution protocols for the (Ca(2+)-Mg2+)-ATPase from rabbit skeletal muscle, using the detergent potassium cholate. Method A was shown to produce fully fragmented membranes of definable lipid to protein ratios, which were unable to take up calcium upon hydrolysis of ATP. This protocol was shown to produce a homologous population of membranes with respect to their lipid and protein composition at lipid to protein ratios up to 900:1 (mol/mol). Method B produced vesicles only of high lipid to protein ratios (3000:1), which have the ability to accumulate calcium on addition of ATP. Calcium accumulation and ATP hydrolysis for the ATPase reconstituted into different fatty acyl chain length phospholipids were also studied.  相似文献   

6.
We have investigated the binding of a new dansylcadaverine derivative of substance P (DNC-SP) with negatively charged small unilamellar vesicles composed of a mixture of phosphatidylcholine (PC) and either phosphatidylglycerol (PG) or phosphatidylserine (PS) using fluorescence spectroscopic techniques. The changes in fluorescence properties were used to obtain association isotherms at variable membrane negative charges and at different ionic strengths. The experimental association isotherms were analyzed using two binding approaches: (i) the Langmuir adsorption isotherm and the partition equilibrium model, that neglect the activity coefficients; and (ii) the partition equilibrium model combined with the Gouy-Chapman formalism that considers electrostatic effects. A consistent quantitative analysis of each DNC-SP binding curve at different lipid composition was achieved by means of the Gouy-Chapman approach using a peptide effective interfacial charge (v) value of (0.95 +/- 0.02), which is lower than the physical charge of the peptide. For PC/PG membranes, the partition equilibrium constant were 7.8 x 10(3) M(-1) (9/1, mol/mol) and 6.9 x 10(3) M(-1) (7/3, mol/mol), whereas for PC/PS membranes an average value of 6.8 x 10(3) M(-1) was estimated. These partition equilibrium constants were similar to those obtained for the interaction of DNC-SP with neutral PC membranes (4.9 x 10(3) M(-1)), as theoretically expected. We demonstrate that the v parameter is a determinant factor to obtain a unique value of the binding constant independently of the surface charge density of the vesicles. Also, the potential of fluorescent dansylated SP analogue in studies involving interactions with cell membranes is discussed.  相似文献   

7.
The molecular architectures of enveloped viruses provide a demonstrative example of perfectly arranged macromolecular complexes, which are formed via highly specific interactions of all structural components. Virus morphogenesis is a multistep process that depends on the concerted actions of many viral and cell components, as well as a fitted organization of main viral constituents. The virus envelope is composed of a mixture of lipid raft and nonraft domains. The domains are recruited from the host cell membrane as discrete well-ordered lipid-protein units during virus assembly. The raft-like nature of the influenza virus A envelope was visualized using a novel approach of cold solubilization of detergent-resistant membranes from intact influenza virus A virions with a mixture of NP40 and octyl glucopyranoside, two nonionic detergents drastically differing in their raft-solubilizing activities. The virus envelope is apparently an ensemble of flexibly joint platforms, which are composed of surface glycoproteins (hemagglutinin and neuraminidase), the matrix M1 protein, and lipids. The modern concept of the transmembrane asymmetry of lateral domains in biological membranes was used to explain the solubilization mechanism revealed. Based on the principles of this concept, the M1 protein shell was assumed to provide a structure-forming framework to support asymmetrical rafts in the virus envelope.  相似文献   

8.
Purified G-protein from vesicular stomatitis virus was reconstituted into egg phosphatidylcholine vesicles by detergent dialysis of octyl glucoside. A homogeneous population of reconstituted vesicles could be obtained, provided the protein to lipid ratio was high (about 0.3 mol % protein) and the detergent removal was slow. The reconstituted vesicles were assayed for fusion activity using electron microscopy and fluorescence energy transfer. The fusion activity mediated by the viral envelope protein was dependent upon pH, temperature, and target membrane lipid composition. Incubation of reconstituted vesicles at low pH with small unilamellar vesicles containing negatively charged lipids resulted in the appearance of large cochleate structures, as shown by electron microscopy using negative stain. This process did not cause leakage of a vesicle-encapsulated aqueous marker. The rate of fusion was pH-dependent with a pK of about 4 and the apparent energy of activation for the fusion was 16 +/- 1 kcal/mol. G-protein-mediated fusion showed a large preference for target membranes which contain phosphatidylserine or phosphatidic acid. Inclusion of 36% cholesterol in any of the lipid compositions had no effect on the rate of fusion. These reconstituted vesicles provide a system to study the mechanism of pH-dependent fusion induced by a viral spike protein.  相似文献   

9.
Planar lipid bilayer membranes are formed from mixtures of pure lipids in the absence of non-biological solvents. The solventless bilayers are characterized by a large specific capacitance (586-957 nF/cm2) comparable to that of cell membranes but considerably greater than that of conventional lipid/decane bilayers. Hydrocarbon solvents, such as n-alkanes or squalene, thicken the bilayer. Membrane dielectric thickness is used as an indicator of bilayer lipid composition. For membranes made from pure monoglyceride/triglyceride mixtures the thickness of the solventless lipid bilayer is independent of both the chain length (11-22 carbons) and mol fraction (0.1-0.9) of triglyceride in the bulk mixture. In contrast, the thickness of the bilayer (2.0-3.3 nm) depends strongly upon the length (16-24 carbons) of the monoglyceride component. Molecular volume considerations lead to the conclusion that the bulk lipid mixture disproportionates to yield bilayer membranes composed of nearly pure monoglyceride. The dielectric thickness of the monoglyceride bilayer is consistent with the notion that the lipid fatty acyl chains are fluid.  相似文献   

10.
When cell membranes are treated with Triton X-100 or other detergents at 4 degrees C, a nonsolubilized fraction can often be recovered, the "detergent-resistant membranes", that is not found when detergent treatment takes place at 37 degrees C. Detergent-resistant membranes may be related in some cases to membrane "rafts". However, several basic aspects of the formation of detergent-resistant membranes are poorly understood. To answer some of the relevant questions, a simple bilayer composition that would mimic detergent-resistant membranes was required. The screening of multiple lipid compositions has shown that the binary mixture egg sphingomyelin/egg ceramide (SM/Cer) exhibits the required detergent resistance. In detergent-free membranes composed of different mixtures of SM and Cer (5-30 mol % of Cer) differential scanning calorimetry, fluorescence spectroscopy, and fluorescence microscopy experiments reveal the presence of discrete, Cer-enriched gel domains in a broad temperature range. In particular, at temperatures below SM phase transition ( approximately 40 degrees C) two gel (respectively Cer-rich and SM-rich) phases are directly observed using fluorescence microscopy. Although pure SM membranes are fully solubilized by Triton X-100 at room temperature, 5 mol % Cer is also enough to induce detergent resistance, even with a large detergent excess and lengthy equilibration times. Short-chain Cers do not give rise to detergent resistance. SM/Cer mixtures containing up to 30 mol % Cer become fully soluble at approximately 50 degrees C, i.e., well above the gel-fluid transition temperature of SM. The combined results of temperature-dependent solubilization and differential scanning calorimetry reveal that SM-rich domains are preferentially solubilized over the Cer-rich ones as soon as the former melt (i.e., at approximately 40 degrees C). As a consequence, at temperatures allowing only partial solubilization, the nonsolubilized residue is enriched in Cer with respect to the original bilayer composition. Fluorescence microscopy of giant unilamellar vesicles at room temperature clearly shows that SM-rich domains are preferentially solubilized over the Cer-rich ones and that the latter become more rigid and extensive as a consequence of the detergent effects. These observations may be relevant to the phenomena of sphingomyelinase-dependent signaling, generation of "raft platforms", and detergent-resistant cell membranes.  相似文献   

11.
A novel spin labeling technique is used to determine both the inner and outer surface potentials of isolated rod outer segment disc membranes and of reconstituted membranes containing rhodopsin with defined lipid compositions. It is shown that these potentials can be accounted for in a consistent manner by the accepted model of rhodopsin, the known lipid composition, and the Gouy-Chapman theory, provided the charged lipid is asymmetric in the membrane, with approximately 75% on the external surface.  相似文献   

12.
Abstract

Introduction

The so-called IRIV- (Immunopotentiating Reconstituted Influenza Virosomes) system (1) is a new type of vaccine. During the past five years extensive experience has been accumulated concerning the immunological and side effects in organisms, both animals and humans, in order to draw up an assessment of the new vaccine Although IRIV could be placed in the category of liposomal vaccines this classification is, however, not quite correct. Such a classification could raise certain questions regarding its use in human medicine. These questions are derived from toxicological studies in animals to which liposomes combined with lipid A were administered It would be valuable to clear up the difference between an IRIV and a liposomal vaccine, with and without lipid A The IRIV is made up of a combination of liposomes (without lipid A) and influenza vims envelopes. Above all, the inclusion of liposomes imposes itself since they already receive much consideration as a new immunological adjuvant and will probably, in the near future, find a large place both as vaccines and as therapeutics.  相似文献   

13.
Three variants of the liposome fusion (coalescence) method to produce supported lipid bilayers, containing the ganglioside GM1 on silicon nitride surfaces, were studied. The first procedure involved attachment and fusion of liposomes containing DMPC, GM1 and a small amount of biotinylated lipid (Biotin-LC-DPPE) to a streptavidin coated surface. Direct fusion of liposomes composed of a mixture of DPPC, DPPG, DPPE, GM1 and cholesterol to the surface were the second variant. The final method utilised the second type of liposomes, fused onto a streptavidin layer with a small amount of exposed hydrophobic tails. The methods produced similar lipid layers, but with different ways of attachment to the surface. The binding of cholera toxin B-subunit (CTB) towards these sensor surfaces was measured in a resonant mirror biosensor instrument and the activity and longer-term stability of the layers were examined. The prepared surfaces were also imaged by atomic force microscopy (AFM) in liquid to characterise the topography of the lipid layers. The binding efficiency of CTB towards these surfaces was discussed in terms of lipid fluidity and surface roughness.  相似文献   

14.
J R Wiener  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1985,24(26):7651-7658
In order to investigate the mode of interaction of peripheral membrane proteins with the lipid bilayer, the basic (pI approximately 9.1) matrix (M) protein of vesicular stomatitis virus was reconstituted with small unilamellar vesicles (SUV) containing phospholipids with acidic head groups. The lateral organization of lipids in such reconstituted membranes was probed by fluorescent phospholipid analogues labeled with pyrene fatty acids. The excimer/monomer (E/M) fluorescence intensity ratios of the intrinsic pyrene phospholipid probes were measured at various temperatures in M protein reconstituted SUV composed of 50 mol % each of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The M protein showed relatively small effects on the E/M ratio either in the gel or in the liquid-crystalline phase. However, during the gel to liquid-crystalline phase transition, the M protein induced a large increase in the E/M ratio due to phase separation of lipids into a neutral DPPC-rich phase and DPPG domains presumably bound to M protein. Similar phase separation of bilayer lipids was also observed in the M protein reconstituted with mixed lipid vesicles containing one low-melting lipid component (1-palmitoyl-2-oleoylphosphatidylcholine or 1-palmitoyl-2-oleoylphosphatidylglycerol) or a low mole percent of cholesterol. The self-quenching of 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence, as a measure of lipid clustering in the bilayer, was also studied in M protein reconstituted DPPC-DPPG vesicles containing 5 mol % NBD-phosphatidylethanolamine (NBD-PE). The quenching of NBD-PE was enhanced at least 2-fold in M protein reconstituted vesicles at temperatures within or below the phase transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of physiologically relevant ceramide concentrations (< or = 4 mol %) in raft model membranes with a lipid composition resembling that of cell membranes, i.e., composed of different molar ratios of an unsaturated glycerophospholipid, sphingomyelin, and cholesterol (Chol) along a liquid-disordered-liquid-ordered tie line was explored. The application of a fluorescence multiprobe and multiparameter approach, together with multiple fluorescence resonance energy transfer (FRET) pairs, in the well-characterized palmitoyl-oleoyl-phosphocholine (POPC)/palmitoyl-sphingomyelin (PSM)/Chol ternary mixture, revealed that low palmitoyl-ceramide (PCer) concentrations strongly changed both the biophysical properties and lipid lateral organization of the ternary mixtures in the low-to-intermediate Chol/PSM-, small raft size range (<25 mol % Chol). For these mixtures, PCer recruited up to three PSM molecules for the formation of very small ( approximately 4 nm) and highly ordered gel domains, which became surrounded by rafts (liquid-ordered phase) when Chol/PSM content increased. However, the size of these rafts did not change, showing that PCer did not induce the formation of large platforms or the coalescence of small rafts. In the high Chol/PSM-, large raft domains range (>33 mol % Chol), Chol completely abolished the effect of PCer by competing for PSM association. Lipid rafts govern the biophysical properties and lateral organization in these last mixtures.  相似文献   

16.
The lipid requirements of the Torpedo californica nicotinic acetylcholine receptor (nAChR) were assessed by reconstituting purified receptors into lipid vesicles of defined composition and by using photolabeling with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) to determine functionality. Earlier studies demonstrated that nAChRs reconstituted into membranes containing phosphatidylcholine (PC), the anionic lipid phosphatidic acid (PA), and cholesterol (CH) are particularly effective at stabilizing the nAChR in the resting (closed) state that is capable of undergoing agonist-induced conformational transitions (i.e., functionality). The present studies demonstrate that (1) there is no obligatory requirement for PC, (2) increasing the CH content serves to increase the degree to which nAChRs are stabilized in the resting state, and this effect saturates at approximately 35 mol % (molar lipid percentage), and (3) the effect of increasing levels of PA saturates at approximately 12 mol % and in the absence of PA nAChRs are stabilized in the desensitized state (i.e., nonfunctional). Native Torpedo membranes contain approximately 35 mol % CH but less than 1 mol % PA, suggesting that other anionic lipids may substitute for PA. We report that (1) phosphatidylserine (PS) and phosphatidylinositol (PI), anionic lipids that are abundant in native Torpedo membranes, also stabilize the receptor in the resting state although with reduced efficacy (approximately 50-60%) compared to PA, and (2) for nAChRs reconstituted into PA/CH membranes at different lipid-protein molar ratios, receptor functionality decreases rapidly below approximately 65 lipids per receptor. Collectively, these results are consistent with a functional requirement of a single shell of lipids surrounding the nAChR and specific anionic lipid- and sterol (CH)-protein interactions.  相似文献   

17.
The composition of pulmonary surfactant membranes and films has evolved to support a complex lateral structure, including segregation of ordered/disordered phases maintained up to physiological temperatures. In this study, we have analyzed the temperature-dependent dynamic properties of native surfactant membranes and membranes reconstituted from two surfactant hydrophobic fractions (i.e., all the lipids plus the hydrophobic proteins SP-B and SP-C, or only the total lipid fraction). These preparations show micrometer-sized fluid ordered/disordered phase coexistence, associated with a broad endothermic transition ending close to 37°C. However, both types of membrane exhibit uniform lipid mobility when analyzed by electron paramagnetic resonance with different spin-labeled phospholipids. A similar feature is observed with pulse-field gradient NMR experiments on oriented membranes reconstituted from the two types of surfactant hydrophobic extract. These latter results suggest that lipid dynamics are similar in the coexisting fluid phases observed by fluorescence microscopy. Additionally, it is found that surfactant proteins significantly reduce the average intramolecular lipid mobility and translational diffusion of phospholipids in the membranes, and that removal of cholesterol has a profound impact on both the lateral structure and dynamics of surfactant lipid membranes. We believe that the particular lipid composition of surfactant imposes a highly dynamic framework on the membrane structure, as well as maintains a lateral organization that is poised at the edge of critical transitions occurring under physiological conditions.  相似文献   

18.
Atomic force microscopy has been used to study the distribution of ganglioside GM1 in model membranes composed of ternary lipid mixtures that mimic the composition of lipid rafts. The results demonstrate that addition of 1% GM1 to 1:1:1 sphingomyelin/dioleoylphosphatidylcholine/cholesterol monolayers leads to the formation of small ganglioside-rich microdomains (40-100 nm in size) that are localized preferentially in the more ordered sphingomyelin/cholesterol-rich phase. With 5% GM1 some GM1 microdomains are also detected in the dioleoylphosphatidylcholine-rich phase. A similar preferential localization of GM1 in the ordered phase is observed for bilayers with the same ternary lipid mixture in the upper leaflet. The small GM1-rich domains observed in these experiments are similar to the sizes for lipid rafts in natural membranes but considerably smaller than the ordered bilayer domains that have been shown to be enriched in GM1 in recent fluorescence microscopy studies of lipid bilayers. The combined data from a number of studies of model membranes indicate that lateral organization occurs on a variety of length scales and mimics many of the properties of natural membranes.  相似文献   

19.
The membrane transport protein lactose permease (LacY), a member of the Major Facilitator Superfamily (MFS) containing twelve membrane-spanning segments connected by hydrophilic loops, was reconstituted in liposomes of: (i) 1,2-dimyristoyl-sn-glycero-3-phosphocoline (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in equimolar proportions; and (ii) Escherichia coli total lipid extract. The structural order of the lipid membranes, in the presence and absence of LacY, was investigated using steady-state fluorescence anisotropy. The features of the anisotropy curves obtained with 1,6-phenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluene sulfonate (TMA-DPH) evidenced: (i) the insertion of LacY into the bilayer; and (ii) a surface effect on the membranes. The most dramatic effects were observed when LacY was reconstituted in the E. coli lipid matrix. The effect of the protein on the electrostatic surface potential of each bilayer was also examined using a fluorescent pH indicator, 4-Heptadecyl-7-hydroxycoumarin (HHC). Changes in surface potential were enhanced in the presence of the substrate (i.e. lactose) only when the lipid matrices were charged. These results suggest a role for charged phospholipids (i.e. phosphatidylethanolamine or phosphatidylglycerol) in proton transfer to the amino acids involved in substrate translocation.  相似文献   

20.
The activity of purified recombinant yeast dolichyl-phosphomannose synthase (EC 2.4.1.83) was assessed following reconstitution of the enzyme with phospholipids. The yeast synthase, similar to the mammalian enzyme, was active when reconstituted with phosphatidylethanolamine dispersions but had little (less than 5%) activity in stable phosphatidylcholine bilayers. The enzyme was activated by adding increasing amounts of diacylglycerol to phospholipid bilayers, suggesting that activity of the yeast enzyme was dependent on lipid phase properties rather than specific phospholipids. The synthase could also be reconstituted as an active enzyme in bilayers prepared with a commercial crude lipid preparation containing 40% phosphatidylcholine, but at a rate 10% of that occurring in phosphatidylethanolamine. Vesicles composed of the 40% phosphatidylcholine lipid mixture, dolichyl phosphate, and enzyme were leaky in the presence of divalent cations, and dolichyl-phosphomannose synthase did not appear to catalyze the translocation of dolichyl phosphomannose across membranes at a catalytically significant rate under the assay conditions employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号