首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasite-induced behavioral changes in their hosts favor to complete the lifecycle of parasites. Schistosome infection is also known to cause physiological changes in infected freshwater snail intermediate hosts. Here, we report, a novel phenomenon in which Schistosoma mansoni, a highly debilitating worm affecting millions of people worldwide, alters the phototropic behavior of Biomphalaria glabrata, the vector snail. S. mansoni-infection enhanced positive phototropism of vector snails and infected snails spent significantly more time in light. Possibly, these behavioral changes help the parasite to be released efficiently from the infected intermediate hosts, and to infect mammalian hosts.  相似文献   

2.
The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens.  相似文献   

3.
The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens.  相似文献   

4.
In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.  相似文献   

5.
Nancy F. Smith 《Oecologia》2001,127(1):115-122
Spatial variation in parasitism is commonly observed in intermediate host populations. However, the factors that determine the causes of this variation remain unclear. Increasing evidence has suggested that spatial heterogeneity in parasitism among intermediate hosts may result from variation in recruitment processes initiated by definitive hosts. I studied the perching and habitat use patterns of wading birds, the definitive hosts in this system, and its consequences for the recruitment of parasites in snail intermediate hosts. Populations of the mangrove snail, Cerithidea scalariformis, collected from mangrove swamps on the east coast of central Florida are parasitized by a diverse community of trematode parasites. These parasites are transmitted from wading birds, which frequently perch on dead mangrove trees. I tested the hypothesis that mangrove perches act as transmission foci for trematode infections of C. scalariformis and that the spatial variation of parasitism frequently observed in this system is likely to emanate from the distribution of wading birds. On this fine spatial scale, definitive host behaviors, responding to a habitat variable, influenced the distribution, abundance and species composition of parasite recruitment to snails. This causal chain of events is supported by regressions between perch density, bird abundance, bird dropping density and ultimately parasite prevalence in snails. Variation between prevalence of parasites in free-ranging snails versus caged snails shows that while avian definitive hosts initiate spatial patterns of parasitism in snails through their perching behaviors, these patterns may be modified by the movement of snail hosts. Snail movement could disperse their associated parasite populations within the marsh, which may potentially homogenize or further increase parasite patchiness initiated by definitive hosts.  相似文献   

6.
The development of Echinostoma cinetorchis in several snail species reared in laboratory aquaria was observed. The eggs from adult flukes collected from the intestine of rats were cultivated to miracidia, and exposed to Hippeutis sp. snails. Observations were made for cercarial shedding from the exposed snails. The cercariae shed from the snails were again exposed to several species of fresh water snails in order to observe metacercarial formation in the snails and their infectivity to final hosts. The results obtained in this study were as follows: 1. Twenty miracidia were exposed to each snail of Hippeutis sp. About 58.3% of the above snails (7 out of 12) were dead before shedding the cercariae, and the remainder shed the cercariae for a period of 7 to 9 days before death. 2. Cercarial shedding from the infected snails started from the 25th day after the exposure to miracidia, and the total number of cercariae shed per snail was 684 in average (range; 482-904). 3. The size of rediae developed in the infected Hippeutis sp. snails was 1,242 x 214 microns in average, and the number of rediae per snail was 350 in average (range; 120-510). 4. About 40 to 50 cercariae shed from the Hippeutis sp. snails were each exposed to several species of snails reared in the laboratory. The metacercarial formation was confirmed by dissecting the infected snails, 12 to 16 days after the infection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Schistosome parasites commonly show specificity to their intermediate mollusc hosts and the degree of specificity can vary between parasite strains and geographical location. Here the role of miracidial behaviour in host specificity of Schistosoma haematobium on the islands of Zanzibar is investigated. In choice-chamber experiments, S. haematobium miracidia moved towards Bulinus globosus snail hosts in preference to empty chambers. In addition, miracidia preferred uninfected over patent B. globosus. This preference should benefit the parasite as patent snails are likely to have mounted an immune response to S. haematobium as well as providing poorer resources than uninfected snails. Miracidia also discriminated between the host B. globosus and the sympatric, non-host species Cleopatra ferruginea. In contrast, S. haematobium did not discriminate against the allopatric Bulinus nasutus. Penetration of the host by miracidia was investigated by screening snails 24 h after exposure using polymerase chain reaction (PCR) with S. haematobium specific DraI repeat primers. There was no difference in the frequency of penetration of B. globosus versus B. nasutus. These responses to different snail species may reflect selection pressure to avoid sympatric non-hosts which represent a transmission dead end. The distribution of B. nasutus on Unguja is outside the endemic zone and so there is less chance of exposure to S. haematobium, hence there will be little selection pressure to avoid this non-host snail.  相似文献   

8.
In areas endemic for schistosomiasis, the population dynamics of the snail intermediate hosts have a direct effect on parasite transmission. The present study focused on the potential for neonatal Biomphalaria glabrata snails to become infected with Schistosoma mansoni and to produce cercariae under various conditions. It was found that snails as small as 0.74 mm in shell diameter could survive miracidial penetration and could release cercariae when as small as 1.6 mm in diameter. Cercariae produced by small snails were equally infectious for mice when compared with those shed by larger snails. Likewise, histological examination of neonatally exposed snails revealed normally developing parasites at all stages of infection. It was found that in 2 snail populations expressing either high or low susceptibility to the parasite, peak susceptibility occurred at 25 days of age in both groups. Daily cercarial production for neonatally exposed snails was initially low but increased dramatically as the snails grew, eventually reaching values as high as 2,100 cercariae/snail/day. A moderate to high percentage of snails infected as neonates was eventually capable of simultaneously producing both eggs and cercariae. These studies emphasize the potential importance of neonatal and preadult snails in helping to maintain foci of S. mansoni infection in endemic areas.  相似文献   

9.
The paper draws together a large and scattered body of empirical evidence concerning the prevalence of snail infection with schistosome parasites in field situations, the duration of the latent period of infection in snails (and its dependence on temperature), and the mortality rates of infected and uninfected snails in field and laboratory conditions. A review and synthesis of quantitative data on the population biology of schistosome infections within the molluscan host is attempted and observed patterns of infection are compared with predictions of a schistosomiasis model developed by May (1977) which incorporates differential snail mortality (between infected and uninfected snails) and latent periods of infection. It is suggested that the low levels of prevalence within snail populations in endemic areas of schistosomiasis are closely associated with high rates of infected snail mortality and the duration of the latent period of infection within the mollusc. In certain instances, the expected life-span of an infected snail may be less than the duration of the latent period of infection. Such patterns generate very low levels of parasite prevalence. A new age prevalence model for schistosome infections within snail populations is developed and its predictions compared with observed patterns. The implications of this study of observed and predicted patterns of snail infection within molluscan populations are discussed in relation to the overall transmission dynamics of schistosomiasis.  相似文献   

10.
Abstract. The hypothesis that infecting trematodes influence the spatial distribution of the estuarine snail Ilyanassa obsoleta was tested. This work was conducted in the Savages Ditch habitat, Rehoboth Bay, DE, USA, which has an essentially flat, sandy-mud bottom bordered by saltmarsh shorelines and many infected snails. In 1996, two groups of snails were individually marked and released from one location after being screened for trematode infections. One group, transplanted from sites where snails tended not to be infected, consisted of snails that tested as uninfected. The other group consisted of snails native to Savages Ditch. Species of trematode carried by each snail was recorded. Marked snails were found and their positions were recorded until 2001. Snails were in five infection categories: (1) not infected, and infected with (2) Himasthla quissetensis , or (3) Lepocreadium setiferoides or (4) Zoogonus rubellus , or (5) with both H. quissetensis and Z. rubellus . The results show that the spatial distributions of snails depended on whether or not they were infected and, if infected, on which trematode species they carried. To complete life cycles, these parasites must accomplish transmission from the first (the snail) to the second intermediate hosts by short-lived, swimming cercariae. These data do not allow resolution of why snails distributed as they did, but sighting distributions of infected snails can be related to distributions of second hosts and it is proposed that parasites engender host snail distributions that improve chances of transmission.  相似文献   

11.
Interactions among different parasite species within hosts can be important factors shaping the evolution of parasite and host populations. Within snail hosts, antagonistic interactions among trematode species, such as competition and predation, can influence parasite abundance and diversity. In the present study we examined the strength of antagonistic interactions between 2 marine trematodes (Maritrema novaezealandensis and Philophthalmus sp.) in naturally infected Zeacumantus subcarinatus snails. We found approximately the same number of snails harbouring both species as would be expected by chance given the prevalence of each. However, snails infected with only M. novaezealandensis and snails with M. novaezealandensis and Philophthalmus sp. co-occurring were smaller than snails harbouring only Philophthalmus sp. In addition, the number of Philophthalmus sp. rediae was not affected by the presence of M. novaezealandensis sporocysts and the within-host clonal diversity of M. novaezealandensis was not influenced by the presence of Philophthalmus sp. Our results suggest that antagonistic interactions may not be a major force influencing the evolution of these trematodes and that characteristics such as host size and parasite infection longevity are shaping their abundance and population dynamics.  相似文献   

12.
Our objective is to evaluate the habitat preference of freshwater snails in relation to environmental factors and the presence of the competitor snail Melanoides tuberculatus. In the first phase, snails was collected at 12 sites. This sampling sites presented a degree of organic input. In the second phase 33 sampling sites were chosen, covering a variety of lotic and lentic environments. The snail species found at Guapimirim, state of Rio de Janeiro, displayed a marked habitat preference, specially in relation to the physical characteristics of each environment. Other limiting factors for snail distribution at the studied lotic environments were the water current velocity and the amount of organic matter, mainly to Physa marmorata, M. tuberculatus, and Biomphalaria tenagophila. The absence of interactions between M. tuberculatus and another snails could be associated to the distinct spatial distribution of those species and the instability of habitats. This later factor may favor the coexistence of M. tuberculatus with B. glabrata by reduction of population density. In areas of schistosomiasis transmission some habitat modification may add to the instability of the environment, which would make room for the coexistence of M. tuberculatus and Biomphalaria spp. In this way, some of the usual measures for the control of snail hosts would prevent the extinction of populations of Biomphalaria spp. by M. tuberculatus in particular habitats.  相似文献   

13.
Sixteen species of aquatic snails of four families were tested by quantitative technique under standardized conditions for their suitability as intermediate hosts for Angiostrongylus cantonensis. These species were the planorbid snails Biomphalaria glabrata, Biomphalaria alexandrina, Planorbis planorbis, Planorbis intermixtus, Bulinus truncatus, Bulinus contortus, Bulinus africanus, Bulinus tropicus and Helisoma sp.; the lymnaeid snails Lymnaea natalensis, Lymnaea tomentosa, Lymnaea stagnalis, and Stagnicola elodes; the physid snail Physa acuta (an Egyptian and a German strain) and the ampullariid snails Marisa cornuarietis and Lanistes carinatus. All these snail species proved to be susceptible to infection with A. cantonensis, and first stage larvae reached the infective third stage in all of them. However, the rate and intensity of infection varied with different species. B. glabrata was the most susceptible snail species with a 100% infection rate and an average percentage recovery of third stage larvae of 26.1. This was followed by S. elodes and B. africanus, with a 100% infection rate and an average percentage recovery of third stage larvae of 15.6 and 14.6 respectively. The rest of snail species proved to be less susceptible. For comparative evaluation of the suitability of the various snail species as intermediate hosts of A. cantonensis a "Capacity Index" was determined. This index should provide a useful method for the evaluation of the suitability of various snails as intermediate hosts of nematode parasites under standardized conditions in the laboratory.  相似文献   

14.
There is a need for recent information on intermediate snail hosts of schistosomes in The Gambia; the previous studies were conducted over three decades ago. This study assessed the incidence, species diversity, distribution and infection status of schistosome intermediate snail hosts in the country. Malacological surveys were conducted in all 5 regions of The Gambia: Central River Region (CRR), Upper River Region (URR), Western Region (WR), Lower River Region (LRR) and North Bank Region (NBR). Sampling of snails was undertaken at 114 sites that included permanent water bodies such as streams (bolongs), rice fields, irrigation canals and swamps; and temporal (seasonal) laterite pools. Ecological and physicochemical factors of sites were recorded. Snails were identified morphologically and screened for schistosome infections using molecular techniques. Freshwater snails were found at more than 50% (60/114) of sites sampled. While three species of Bulinus were collected, no Biomphalaria snails were found in any of the sites sampled. Of the total 2877 Bulinus snails collected, 75.9% were identified as Bulinus senegalensis, 20.9% as Bulinus forskalii and 3.2% as Bulinus truncatus. Seasonal pools produced the largest number of snails, and CRR was the region with the largest number of snails. Bulinus senegalensis was found more in seasonal pools as opposed to permanent sites, where B. forskalii and B. truncatus were observed to thrive. Bulinus snails were more common in seasonal sites where aquatic vegetation was present. In permanent sites, the abundance of snails increased with increase in water temperature and decrease in water pH. Bulinus senegalensis was found infected with both S. haematobium and S. bovis, while B. forskalii and B. truncatus had only S. bovis infection. While the human parasite S. haematobium was restricted to just four sites, the livestock parasite S. bovis had a much more widespread geographical distribution across both CRR and URR. This new information on the distribution of intermediate snail hosts of schistosomes in The Gambia will be vital for the national schistosomiasis control initiative.  相似文献   

15.
Biomphalaria glabrata snails infected with Schistosoma mansoni were collected during consecutive seasons from a site in Brazil known to have a very high percentage of infected snails. Schistosoma mansoni cercariae from single snails were used to infect individual mice, and the recovered adult worms were genetically assessed using a mtVNTR marker. The number of unique parasite genotypes found per snail was compared to expected abundance values, based on the infection prevalence at the site, to determine the distribution of S. mansoni infections within the snail population. The observed distributions and those from previous studies were used to examine the relationship between schistosome prevalence and aggregation across a wide range of prevalence values. Our analysis showed that prevalence was inversely related to the degree of parasite overdispersion, and at high prevalence, S. mansoni infections were randomly distributed among snails.  相似文献   

16.
The metacercarial infections of door snails (Gastropoda: Clausiliidae) with unknown species of the genus Brachylaima (Trematoda: Brachylaimidae) have recently been reported in eastern Honshu and Kyushu, Japan. A large scale snail survey was carried out to clarify their taxonomic status. From the period of 2015 to 2020, a total of 1239 land snails (768 door snails and 471 others) were collected from 32 localities in Honshu, Shikoku, and Kyushu. The resulting trematode isolates were identified as Brachylaima sp. by mitochondrial DNA barcoding. The sporocysts were found only a few from Megalophaedusa sublunellata (Clausiliidae), Tauphaedusa subaculus (Clausiliidae), and Aegista trochula (Camaenidae), while the metacercariae were frequently detected from 14 species of Clausiliidae and 2 species of other families. Although Brachylaima sp. showed a broad range of intermediate hosts, door snails seem to be very important to drive the life cycle. The gravid adults of Brachylaima sp. was experimentally raised from metacercariae using immunosuppressed mice. Morphological, phylogenetical, and ecological considerations prompted us to propose Brachylaima phaedusae n. sp. for this unknown species. The definitive hosts of the new species are completely unknown. The wide geographic distribution and high genetic diversity of the new species suggest a possibility that the definitive host is ground-foraging birds, which prefer door snails.  相似文献   

17.
Digenetic trematodes usually show a high degree of specificity for their molluscan intermediate hosts. A panel of 4 digenean species (Echinostoma paraensei, E. trivolvis, Schistosoma mansoni, and Schistosomatium douthitti) and 5 snail species (Biomphalaria glabrata, Helisoma trivolvis, Lymnaea stagnalis, Stagnicola elodes, and Helix aspersa representing 3 gastropod families) was used to assess the relative contributions of miracidial behavior, host plasma osmolality, and host plasma factors in dictating specificity. Additional experiments were undertaken with a fifth digenean, Echinoparyphium sp. Expected patterns of compatibility were first confirmed; each parasite species produced patent infections in its known snail host, but not in the other snail species. One exception was S. douthitti, which unexpectedly did not infect L. stagnalis. As judged by direct observation and by noting their disappearance after exposure to snails, miracidia were generally less likely to attach to or penetrate incompatible than compatible hosts. However, over half of the miracidia of each parasite species attached to or attempted penetration of both compatible and incompatible hosts, suggesting that under the experimental conditions used, miracidial host location and attachment behaviors were not of overriding importance in dictating observed patterns of specificity. For each digenean species, the percentage of larvae that became immobile, rounded, showed tegumental damage, or died over a 6-hr interval in plasma of the various snails was assessed. In no case was plasma from a compatible host harmful to sporocysts or rediae. In contrast, in 8 of 16 (50%) incompatible combinations, snail plasma had a significant negative effect on sporocyst condition. In 4 of 12 (33%) incompatible combinations, plasma had a significant negative effect on rediae. In 9 of 10 combinations tested, lymnaeid plasma was toxic for the parasites of planorbid snails and in 2 of 4 combinations, planorbid plasma was toxic for the parasites of lymnaeid snails. Toxicity was not attributable to differences in plasma osmolality between snail species. The ability of plasma from incompatible snails to affect viability of both sporocysts and rediae was surprisingly strong, suggesting that humoral factors play a greater role in dictating patterns of digenean-snail specificity than previously appreciated.  相似文献   

18.
African freshwater snails of the genus Bulinus act as intermediate hosts for schistosomes, trematode parasites responsible for medical and veterinary forms of schistosomiasis. The relationship between these snails and their parasites is an intricate one, with particular species of snail susceptible to infection only by certain species of schistosome. In common with other self-fertile hermaphrodite gastropods, Bulinus consists of a number of closely related species complexes with restricted gene flow between populations of each taxon. Consequently, despite their medical and veterinary importance as intermediate hosts, unambiguous identification and differentiation of planorbid snails such as these remains problematic, often confounding attempts to define the distribution and evolutionary relationships of conchologically similar taxa. Here we consider how morphological methods of discrimination can be used in conjunction with molecular based approaches to improve snail identification, thereby achieving a better understanding of the epidemiology of schistosomiasis. Data are presented from Central and East African taxa which illustrate how PCR-based methods have begun to be used in combination with traditional analyses in an integrated approach to characterize the genus Bulinus , specifically the B. forskalii species group. Particular emphasis is given to the analyses of Random Amplified Polymorphic DNA (RAPDs) and the mitochondrial gene cytochrome oxidase I (COI).  相似文献   

19.
A partial life cycle involving miracidia hatched from the eggs of Trichobilharzia sp. recovered from New Zealand scaup (Aythya novaeseelandia) to the release of furcocercariae by laboratory snails (Lymnaea tomentosa) was accomplished. Challenges with five and ten miracidia per snail were lethal. Challenge with three miracidia resulted in development to the daughter sporocyst stage and death in five, development to furcocercarial stage and death in one, and shedding of furcocercariae in one of seven snails. Observed lethality of schistosome miracidia to L. tomentosa may explain the low infection prevalence observed in the wild. Future work should plan challenge exposures of three or fewer miracidia to ensure snail survival and successful recovery of furcocercariae. The Trichobilharzia sp. found in the New Zealand scaup does not key morphologically to the literature. It may be a new species and further work is needed.  相似文献   

20.
Snail surveys were carried out in various parts of Mali. All areas surveyed are part of the Niger basin being either affluents or irrigation schemes fed by this river. The snail species present varied greatly between areas. The following potential hosts of schistosomes were recorded: Biomphalaria pfeifferi, Bulinus truncatus, B. globosus, B. umbilicatus, B. forskalii and B. senegalensis. In the large irrigation schemes, i.e. ‘Office du Niger’ and Baguinéda, only B. pfeifferi and B. truncatus appear to be intermediate hosts. Snail distribution appeared to some extent to be focal and high snail densities appeared to be associated with human water contact activities, which apparently create favourable biotopes for the snails. This is probably due to an alteration of the vegetation and an increase of the trophic status of the site by contamination with food remnants and other debris. The larger irrigation canals or lakes in these schemes play an important role in the transmission of human schistosomes and transmission appears to be very focal in these habitats. Infected snails are almost exclusively found in well-defined human water contact sites (WCS). Local infection rates with schistosomes were often high (i.e. up to 27% in B. pfeifferi). In urban areas (i.e. Bamako), transmission patterns are more variable. In Bamako schistosome-infected B. truncatus were found in the Niger river. A number of smaller semi-permanent or permanent streams are very important transmission sites, and schistosome infections were recorded from B. pfeifferi, B. truncatus and B. globosus. Schistosome infection rates in B. pfeifferi were often high (up to 30%). In a new lake at Sélingué, B. truncatus was found to be widely distributed only about a year and a half after the dam was constructed, and in some sites schistosome infections were recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号