首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When mouse L cells are infected for 22 hr with vesicular stomatitis virus (VSV), a ribonucleic acid-containing enveloped virus, greater than 70% of the major histocompatibility antigen (H-2), is no longer detectable by the method of inhibition of immune cytolysis. Infected cells prelabeled with (14)C-glucosamine also show a correspondingly greater loss of trichloroacetic acid-insoluble radioactivity than uninfected cells. The loss of H-2 antigenic activity is not due to the viral inhibition of host cell protein synthesis since cells cultured for 18 hr in the presence of cycloheximide have the same amount of H-2 activity as untreated controls. Also, cells infected with encephalomyocarditis virus, a picornavirus, show no loss of H-2 activity at a time when host cell protein synthesis is completely inhibited. VSV structural proteins associated in vitro with uninfected L-cell plasma membranes do not render H-2 sites inaccessible to the assay. Although antibodies may not combine with all the H-2 antigenic sites on the plasma membrane, anti-H-2 serum reacted with L cells before infection does not prevent a normal infection with VSV. H-2 activity can be detected in virus samples purified from the medium of infected L cells; this virus purified after being mixed with L-cell homogenates shows greater H-2 activity than virus purified after being mixed with HeLa cell homogenates. However, VSV made in HeLa cells shows no H-2 activity when mixed with L-cell homogenates.  相似文献   

2.
Using monoclonal antibodies and indirect immunofluorescence microscopy, we investigated the distribution of the M protein in situ in vesicular stomatitis virus-(VSV) infected MDCK cells. M protein was observed free in the cytoplasm and associated with the plasma membrane. Using the ts045 mutant of VSV to uncouple the synthesis and transport of the VSV G protein we demonstrated that this distribution was not related to the presence of G protein on the cell surface. Sections of epon-embedded infected cells labeled with antibody to the M protein and processed for indirect horseradish peroxidase immunocytochemistry revealed that the M protein was associated specifically with the basolateral plasma membrane. The G and M proteins of VSV have therefore evolved features which bring them independently to the basolateral membrane of polarized epithelial cells and allow virus to bud specifically from that membrane.  相似文献   

3.
The matrix (M) protein of vesicular stomatitis virus (VSV) is a major structural component of the virion which is generally believed to bridge between the membrane envelope and the ribonucleocapsid (RNP) core. To investigate the interaction of M protein with cellular membranes in the absence of other VSV proteins, we examined its distribution by subcellular fractionation after expression in HeLa cells. Approximately 90% of M protein, expressed without other viral proteins, was soluble, whereas the remaining 10% was tightly associated with membranes. A similar distribution in VSV-infected cells has been observed previously. Conditions known to release peripherally associated membrane proteins did not detach M protein from isolated membranes. Membrane-associated M protein was soluble in the detergent Triton X-114, whereas soluble M protein was not, suggesting a chemical or conformational difference between the two forms. Membranes containing associated M protein were able to bind RNP cores, whereas membranes lacking M protein were not. We suggest that this membrane-bound M fraction constitutes a functional subset of M protein molecules required for the attachment of RNP cores to membranes during normal virus budding.  相似文献   

4.
Intact HeLa cells and isolated HeLa cell plasma membranes were subjected to lactoperoxidase-catalysed iodination. The 125I-labelled proteins were separated by SDS-polyacrylamide gel electrophoresis. Six protein species with apparent molecular weights from 32 000 to 200 000 were accessible to labelling from the outer cell surface, while most of the proteins present in the plasma membrane were labelled when isolated plasma membranes were iodinated. Iodination of synchronized intact cells revealed that the labelling obtained was cell cycle dependent with maximal labelling at mitosis. No changes in the distribution of radioactivity among the labelled proteins were observed when cells from different phases were iodinated.  相似文献   

5.
To explore the interaction of vesicular stomatitis virus (VSV) proteins with cellular membranes, we have isolated membranes from infected cells that have been radioactively pulse-labeled. We have found conditions of isolation that result in membrane preparation which contain primarily the VSV membrane protein (M) and glycoprotein (G). Both of these proteins are very firmly attached to membranes: conditions known to release peripherally associated membrane proteins from membranes (S. Razin, Biochim, Biophys. Acta 265:241-246, 1972; S. J. Singer, Annu. Rev. Biochem. 43:805-826, 1974; S. J. Singer and G. L. Nicholson, Science 175:720-731, 1972) are ineffective in detaching either the G or the M protein. The results of trypsin digestion of these membrane fractions suggest that the M protein resides primarily on one side, the cytoplasmic side of cellular membranes, whereas the glycoprotein has been transported to the lumen of the membrane vesicle. However, we present evidence that the glycoprotein is transmembranal and that approximately 3,000 daltons of one end of the molecule is on the cytoplasmic side of the membrane. We have also found that undenatured VSV M protein contains a trypsin-resistant core with a molecular weight of 22,000. This region of the M protein is trypsin-resistant regardless of its association with membranes.  相似文献   

6.
The membrane-binding affinity of the matrix (M) protein of vesicular stomatitis virus (VSV) was examined by comparing the cellular distribution of wild-type (wt) virus M protein with that of temperature-sensitive (ts) and deletion mutants probed by indirect fluorescent-antibody staining and fractionation of infected or plasmid-transfected CV1 cells. The M-gene mutant tsO23 caused cytopathic rounding of cells infected at permissive temperature but not of cells at the nonpermissive temperature; wt VSV also causes rounding, which prohibits study of M protein distribution by fluorescent-antibody staining. Little or no M protein can be detected in the plasma membrane of cells infected with tsO23 at the nonpermissive temperature, whereas approximately 20% of the M protein colocalized with the membrane fraction of cells infected with tsO23 at the permissive temperature. Cells transfected with a plasmid expressing intact 229-amino-acid wt M protein (M1-229) exhibited cytopathic cell rounding and actin filament dissolution, whereas cells retained normal polygonal morphology and actin filaments when transfected with plasmids expressing M proteins truncated to the first 74 N-terminal amino acids (M1-74) or deleted of the first 50 amino acids (M51-229) or amino acids 1 to 50 and 75 to 106 (M51-74/107-229). Truncated proteins M1-74 and M51-229 were readily detectable in the plasma membrane and cytosol of transfected cells as determined by both fluorescent-antibody staining and cell fractionation, as was the plasmid-expressed intact wt M protein. However, the expressed doubly deleted protein M51-74/107-229 could not be detected in plasma membrane by fluorescent-antibody staining or by cell fractionation, suggesting the presence of two membrane-binding sites spanning the region of amino acids 1 to 50 and amino acids 75 to 106 of the VSV M protein. These in vivo data were confirmed by an in vitro binding assay in which intact M protein and its deletion mutants were reconstituted in high- or low-ionic-strength buffers with synthetic membranes in the form of sonicated unilammelar vesicles. The results of these experiments appear to confirm the presence of two membrane-binding sites on the VSV M protein, one binding peripherally by electrostatic forces at the highly charged NH2 terminus and the other stably binding membrane integration of hydrophobic amino acids and located by a hydropathy plot between amino acids 88 and 119.  相似文献   

7.
Erythrocyte and HeLa cell plasma membranes were isolated on polylysinecoated polyacrylamide beads and the transbilayer disposition of their proteins was investigated.When membranes of intact erythrocytes were isolated on beads and then labelled by lactoperoxidase-catalysed iodination, their labelling pattern was similar to that of inside-out vesicles in solution.When the membranes of intact HeLa cells were isolated on beads and then labelled by galactose oxidase-[3H]borohydride treatment, no glycoprotein or glycolipid sugars were accessible. On the other hand, when the HeLa cell membranes were isolated on beads and then labelled by the lactoperoxidase-catalysed iodination, all of the major membrane proteins were iodinated. These experiments confirmed for HeLa cell membranes what had previously been shown for erythrocyte membranes: when the membranes of intact cells are isolated on beads, the accessibility of their surfaces to enzymatic probes is the same as would be expected of inside-out vesicles in suspension. Double-label experiments, in which the HeLa cell membranes were labelled first on the intact HeLa cells and again after isolation on beads, identified several  相似文献   

8.
Harvey F. Lodish  Mary Porter 《Cell》1980,19(1):161-169
The specific incorporation of cell surface proteins into budding Vesicular Stomatitis Virus (VSV) particles was shown by two approaches. In the first, monolayer cultures of Vero or L cells were labeled by lactoperoxidase-catalyzed iodination and the cells were then infected with VSV. Approximately 2% of the cell surface 1251 radioactivity was incorporated into particles which co-purify with normal, infectious virions by both velocity and equilibrium gradient centrifugation and which are precipitated by antiserum specific for the VSV glycoprotein. Control experiments establish that these 125I-labeled particles are not cell debris or cellular material which aggregate with or adhere to VSV virions. VSV virions contain only a subset of the 10–15 normal 1251-labeled cell surface polypeptides resolved by SDS gel electrophoresis; VSV grown in L cells and Vero cells incorporate different host polypeptides. In a second approach, Vero cells were labeled with 35S-methione, then infected with VSV. Two predominant host polypeptides (molecular weights 110,000 and 20,000) were incorporated into VSV virions. These proteins, like VSV G protein, are exposed to the surface of the virion. They co-migrate with the major incorporated 1251 host polypeptides. These host proteins are present in approximately 10 and 80 copies, respectively, per virion. Specific incorporation of host polypeptides into VSV virions does not require the presence of viral glycoprotein. This was shown by use of a ts VSV mutant defective in maturation of VSV G protein to the cell surface. Budding from infected cells are noninfectious particles which contain all the viral proteins except for G; these particles contain the same proportion and spectrum of 1251-labeled host surface polypeptides as do wild-type virions. These results extend previous conclusions implicating the submembrane viral matrix protein, or the viral nucleocapsid, as being of primary importance in selecting cell surface proteins for incorporation into budding VSV virions.  相似文献   

9.
The kinetics of the incorporation of the proteins of vesicular stomatitis virus into the HeLa cell plasma membrane have been studied. The virus M and NS proteins become associated with the plasma membrane very rapidly (< 5 min) while the glycoprotein G shows a lag of about 20 minutes. A similar lag is observed for the incorporation of the G protein into released virus. By pulse-chase experiments the transit time for the G protein from the site of completion to the plasma membrane was also calculated to be about 20 minutes although not all of the G protein could be chased into the plasma membranes.  相似文献   

10.
Phosphorylation of Vesicular Stomatitis Virus In Vivo and In Vitro   总被引:20,自引:16,他引:4  
The structural protein, NS, of purified vesicular stomatitis virus (VSV) is a phosphoprotein. In infected cells phosphorylated NS is found both free in the cytoplasm and as part of the viral ribonucleoprotein (RNP) complex containing both the 42S RNA and the structural proteins L, N, and NS, indicating that phosphorylation occurs as an early event in viral maturation. VSV contains an endogenous protein kinase activity, probably of host region, which catalyzes the in vitro phosphorylation of the viral proteins NS, M, and L, but not of N or G. The phosphorylated sites on NS appear to be different in the in vivo and in vitro reactions, and are differentially sensitive to alkaline phosphatase. After removal of the membrane components of purified VSV with a dextran-polyethylene glycol two-phase separation, the kinase activity remains tightly associated with the viral RNP. However, viral RNP isolated from infected cells shows only a small amount of kinase activity. The protein kinase enzyme appears to be a cellular contaminant of purified VSV because an activity from the uninfected cell extract can phosphorylate in vitro the dissociated viral proteins NS and M. The virion-associated activity may be derived either from the cytoplasm or the plasma membrane of the host cell since both of these cellular components contain protein kinase activity similar to that found in purified VSV.  相似文献   

11.
In intact Madin-Darby canine kidney (MDCK) cell monolayers, vesicular stomatitis virus (VSV) matures only at basolateral membranes beneath tight junctions, whereas influenza virus buds from apical cell surfaces. Early in the growth cycle, the viral glycoproteins are restricted to the membrane domain from which each virus buds. We report here that phenotypic mixing and formation of VSV pseudotypes occurred when influenza virus-infected MDCK cells were superinfected with VSV. Up to 75% of the infectious VSV particles from such experiments were neutralized by antiserum specific for influenza virus, and a smaller proportion (up to 3%) were resistant to neutralization with antiserum specific for VSV. The latter particles, which were neutralized by antiserum to influenza A/WSN virus, are designated as VSV(WSN) pseudotypes. During mixed infections, both wild-type viruses were detected 1 to 2 h before either phenotypically mixed VSV or VSV(WSN) pseudotypes. Coincident with the appearance of cytopathic effects in the monolayer, the yield of pseudotypes rose dramatically. In contrast, in doubly infected BHK-21 cells, which do not show polarity in virus maturation sites and are not connected by tight junctions, VSV(WSN) pseudotypes were detected as soon as VSV titers rose to the minimum levels which allowed detection of pseudotypes, and the proportion observed remained relatively constant at later times. Examination of thin sections of doubly infected MDCK monolayers revealed that polarity in maturation sites was preserved for both viruses until approximately 12 h after inoculation with influenza virus, when disruption of junctional complexes was evident. Even at later periods, the majority of each virus type was associated with its normal membrane domain, suggesting that the sorting mechanisms responsible for directing the glycoproteins of VSV and influenza virus to separate surface domains continue to operate in doubly infected MDCK cells. The time course of VSV(WSN) pseudotype formation and changes in virus maturation sites are compatible with progressive mixing of viral glycoproteins at either intracellular or plasma membranes of doubly infected cells.  相似文献   

12.
Viral matrix (M) proteins bind the nucleoprotein core (nucleocapsid) to host membranes during the process of virus assembly by budding. Previous studies using truncated M proteins had implicated the N-terminal 50 amino acids of the vesicular stomatitis virus M protein in binding both membranes and nucleocapsids and a sequence from amino acids 75-106 as an additional membrane binding region. Structure-based mutations were introduced into these two regions, and their effects on membrane association and incorporation into nucleocapsid-M protein complexes were determined using quantitative assays. The results confirmed that the N terminus of M protein is involved in association with plasma membranes as well as nucleocapsids, although these two activities were differentially affected by individual mutations. Mutations in the 75-106 region affected incorporation into nucleocapsid-M complexes but had only minor effects on association with membranes. The ability of site-specific mutant M proteins to complement growth of temperature-sensitive M mutant virus did not correlate well with the ability to associate with membranes or nucleocapsids, suggesting that complementation involves an additional activity of M protein. Mutants with similar abilities to associate with membranes and nucleocapsids but differing in complementation activity were incorporated into infectious cDNA clones. Infectious virus was repeatedly recovered containing mutant M proteins capable of complementation but was never recovered with mutant M proteins that lacked complementation activity, providing further evidence for a separate activity of M protein that is essential for virus replication.Most viruses that have a membrane or envelope as part of their structure acquire their envelopes by budding from the plasma membrane of the host cell. For budding to occur, the nucleoprotein core of the virus (nucleocapsid) must interact with the cytoplasmic surface of the host membrane. For many viruses this interaction is mediated by a matrix (M)2 protein that binds to both the nucleocapsid and the host membrane (1, 2). Despite the similarity in the functions of viral M proteins, there is little structural or sequence similarity among the M proteins of different virus families (3). Thus, understanding the relationship of structure to function must be undertaken for individual M proteins before the general principles involved in virus budding can be understood. The goal of the experiments described here was to determine sequences in the M protein of vesicular stomatitis virus (VSV) involved in binding to membranes and nucleocapsids.VSV is the prototype member of the Rhabdoviridae family and has been widely studied to determine mechanisms involved in virus budding (2). The core of the virus contains an ∼11-kilobase negative-stranded RNA genome covered by 1300 copies of a single nucleocapsid protein (4). The nucleocapsid also contains lesser amounts of two proteins, P and L, which constitute the viral RNA-dependent RNA polymerase. The envelope contains a single species of transmembrane glycoprotein (G protein) that mediates virus attachment and entry into host cells. The virion contains ∼2000 copies of the M protein (4), which binds the nucleocapsid to the envelope and condenses the nucleocapsid into a tightly coiled helical nucleocapsid-M protein (NCM) complex that gives the virion its bullet-like shape (5-8). In cells infected with VSV and in transfected cells that express M protein in the absence of other VSV components, M protein is present both in a soluble form and bound to the cytoplasmic surface of the host plasma membrane (9-18). Mutagenesis studies, affinity labeling, and membrane reconstitution experiments have suggested that a combination of hydrophobic and ionic interactions mediate M protein binding to membranes by binding acidic phospholipids on the inner surface of the host plasma membrane (for review, see Ref. 19). Binding of M protein to nucleocapsids is less well understood than its binding to membranes. Most of the M protein in isolated NCM complexes is bound in a rapidly reversible equilibrium (20). However, M protein does not bind to nucleocapsids from which all of the M protein has been dissociated or to intracellular nucleocapsids that have never been assembled with M protein (11, 20). This suggests that binding of M protein to nucleocapsids in infected cells must be initiated in a separate step, after which most of the M protein is recruited into the NCM complex through the reversible binding step.M protein does not have separately folded domains that mediate binding to membranes versus nucleocapsids. The 229-amino acid (aa) M protein contains a positively charged N terminus (aa 1-50) that is highly exposed to proteolysis. The remainder of M protein (aa 51-229) is compactly folded to form a protease-resistant core (16, 21-23). The ability to obtain crystals of M protein required proteolytic removal of both the N-terminal sequence (aa 1-47) and a hydrophobic sequence (aa 121-124) to prevent M protein self-association (21, 22); however, the resulting structure showed a single-domain fold for the crystallized portion of M. In the present study we focused on two regions of the M protein structure that had been suggested to be involved in binding to either membranes or nucleocapsids; 1) previous data had implicated the N-terminal sequence in binding to both nucleocapsids and membranes (9, 10, 16, 22-25) and 2) deletion mutagenesis studies had implicated an additional region from aa 75-106 in membrane binding (16).In the experiments described here, M protein sequence substitutions were made using a scanning approach in the N-terminal sequence, and substitutions were based on the crystal structure in the 75-106-aa region. These mutants were used to determine the specific amino acids involved in these interactions. The results confirm that the N terminus of M protein is involved in association with plasma membranes as well as nucleocapsids, although these two activities are differentially affected by individual mutations. Mutations in the 75-106-aa region affected incorporation into NCM complexes but had only minor effects on association with membranes. Furthermore, the ability of mutant M proteins to function in the context of virus infection suggested that a new activity of M protein that is separate from its ability to associate with membranes or NCM complexes is critical for virus assembly.  相似文献   

13.
Three different matrix (M) proteins termed M1, M2 and M3 have been described in cells infected with vesicular stomatitis virus (VSV). Individual expression of VSV M proteins induces an evident cytopathic effect including cell rounding and detachment, in addition to a partial inhibition of cellular protein synthesis, likely mediated by an indirect mechanism. Analogous to viroporins, M1 promotes the budding of new virus particles; however, this process does not produce an increase in plasma membrane permeability. In contrast to M1, M2 and M3 neither interact with the cellular membrane nor promote the budding of double membrane vesicles at the cell surface. Nonetheless, all three species of M protein interfere with the transport of cellular mRNAs from the nucleus to the cytoplasm and also modulate the redistribution of the splicing factor. The present findings indicate that all three VSV M proteins share some activities that interfere with host cell functions.  相似文献   

14.
Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36YdF virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36YdF infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36YdF extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S), another virus envelope protein. We found that the B5P189S mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either through the force of actin nucleation or by mutations in luminal proteins that weaken these interactions.  相似文献   

15.
It is unclear whether proteolytic processing of the human immunodeficiency virus type 1 (HIV-1) Gag protein is dependent on virus assembly at the plasma membrane. Mutations that prevent myristylation of HIV-1 Gag proteins have been shown to block virus assembly and release from the plasma membrane of COS cells but do not prevent processing of Gag proteins. In contrast, in HeLa cells similar mutations abolished processing of Gag proteins as well as virus production. We have now addressed this issue with CD4+ T cells, which are natural target cells of HIV-1. In these cells, myristylation of Gag proteins was required for proteolytic processing of Gag proteins and production of extracellular viral particles. This result was not due to a lack of expression of the viral protease in the form of a Gag-Pol precursor or a lack of interaction between unmyristylated Gag and Gag-Pol precursors. The processing defect of unmyristylated Gag was partially rescued ex vivo by coexpression with wild-type myristylated Gag proteins in HeLa cells. The cell type-dependent processing of HIV-1 Gag precursors was also observed when another part of the plasma membrane binding signal, a polybasic region in the matrix protein, was mutated. The processing of unmyristylated Gag precursors was inhibited in COS cells by HIV-1 protease inhibitors. Altogether, our findings demonstrate that the processing of HIV-1 Gag precursors in CD4+ T cells occurs normally at the plasma membrane during viral morphogenesis. The intracellular environment of COS cells presumably allows activation of the viral protease and proteolytic processing of HIV-1 Gag proteins in the absence of plasma membrane binding.  相似文献   

16.
SYNOPSIS. Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitrogen decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230,000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

17.
Influenza virus and vesicular stomatitis virus (VSV) obtain their lipid envelope by budding through the plasma membrane of infected cells. When monolayers of Madin-Darby canine kidney (MDCK) cells, a polarized epithelial cell line, are infected with fowl plague virus (FPV), an avian influenza virus, or with VSV, new FPV buds through the apical plasma membrane whereas VSV progeny is formed by budding through the basolateral plasma membrane. FPV and VSV were isolated from MDCK host cells prelabeled with [32P]orthophosphate and their phospholipid compositions were compared. Infection was carried out at 31 degrees C to delay cytopathic effects of the virus infection, which lead to depolarization of the cell surface. 32P-labeled FPV was isolated from the culture medium, whereas 32P-labeled VSV was released from below the cell monolayer by scraping the cells from the culture dish 8 h after infection. At this time little VSV was found in the culture medium, indicating that the cells were still polarized. The phospholipid composition of the two viruses was distinctly different. FPV was enriched in phosphatidylethanolamine and phosphatidylserine and VSV in phosphatidylcholine, sphingomyelin, and phosphatidylinositol. When MDCK cells were trypsinized after infection and replated, non-infected control cells attached to reform a confluent monolayer within 4 h, whereas infected cells remained in suspension. FPV and VSV could be isolated from the cells in suspension and under these conditions the phospholipid composition of the two viruses was very similar. We conclude that the two viruses obtain their lipids from the plasma membrane in the same way and that the different phospholipid compositions of the viruses from polarized cells reflect differences in the phospholipid composition of the two plasma membrane domains.  相似文献   

18.
HeLa cells doubly infected with Semliki Forest virus (SFV) and poliovirus synthesize either more poliovirus proteins or more SFV late proteins depending on the time of super-infection with poliovirus. Under some conditions, the infected cells translate uncapped poliovirus mRNA and capped 26S mRNA from SFV simultaneously, even though host protein synthesis has been shut down. Vesicular stomatitis virus (VSV) protein synthesis is depressed drastically when VSV-infected cells are super-infected with poliovirus. In cells doubly infected with VSV and encephalomyocarditis (EMC) virus or with VSV and SFV, dominance of one of the viruses depends on the time of addition of the challenge virus. The influence of external conditions on the relative translation of capped or uncapped viral mRNA in doubly infected cells has also been analysed.  相似文献   

19.
By immunogold labelling the location of Festuca leaf streak virus glycoprotein (FLSV-G) was investigated in developing phloem and mature leaf parenchyma of Festuca gigantea infected with Festuca leaf streak virus (FLSV: Rhabdotiridae). In developing phloem cells, FLSV-G was detected in endoplasmic reticulum (ER). at perinuclear membranes, and in assembled virions, but neither in Golgi stacks and Golgi vesicles nor at the plasma membrane of infected cells. These results indicate that FLSV-G stays in the ER after transmembrane synthesis, and is not routed through the secretory pathway in F. gigantea. The membranous inclusions, present in infected mature leaf parenchyma cells were found to contain FLSV-G. It is suggested that the, virus-induced membranous inclusions have developed from FLSV-G-containing ER. The residence of FLSV-G in ER (present study) is in contrast to results with vesicular stomatitis virus (VSV; vertebrate rhabdovirus). Here the G protein is known to be routed to the plasma membrane through the secretory pathway.  相似文献   

20.
Brown EL  Lyles DS 《Journal of virology》2005,79(11):7077-7086
Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号