首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The human pathogenic fungus Candida albicans, which can reside as a benign commensal of the gut, possesses a large family of lipase encoding genes whose extracellular activity may be important for colonization and subsequent infection. The expression of the C. albicans lipase gene family (LIP1-10) was investigated using a mouse model of mucosal candidiasis during alimentary tract colonization (cecum contents) and orogastric infection. LIPs4-8 were expressed in nearly every sample prepared from the cecum contents and infected mucosal tissues (stomach, hard palate, esophagus and tongue) suggesting a maintenance function for these gene products. In contrast, LIPs1, 3, and 9, which were detected consistently in infected gastric tissues, were essentially undetectable in infected oral tissues. In addition, LIP2 was expressed consistently in cecum contents but was undetectable in infected oral tissues suggesting LIP2 may be important for alimentary tract colonization, but not oral infection. The host responded to a C. albicans infection by significantly increasing expression of the chemokines MIP-2 and KC at the site of infection. Therefore, differential LIP gene expression was observed during colonization, infection and at different infected mucosal sites.  相似文献   

3.
4.
An understanding of the complex interactions between pathogenic microbes and their host must include the identification of gene expression patterns during infection. To detect the activation of virulence genes in the opportunistic fungal pathogen Candida albicans in vivo by host signals, we devised a reporter system that is based on FLP-mediated genetic recombination. The FLP gene, encoding the site-specific recombinase FLP, was genetically modified for expression in C. albicans and fused to the promoter of the SAP2 gene that codes for one of the secreted aspartic proteinases, which are putative virulence factors of C. albicans. The SAP2P-FLP fusion was integrated into one of the SAP2 alleles in a strain that contained a deletable marker that conferred resistance to mycophenolic acid and was flanked by direct repeats of the FLP recognition target (FRT). Using this reporter system, a transient gene induction could be monitored at the level of single cells by the mycophenolic acid-sensitive phenotype of the colonies generated from such cells after FLP-mediated marker excision. In two mouse models of disseminated candidiasis, SAP2 expression was not observed in the initial phase of infection, but the SAP2 gene was strongly induced after dissemination into deep organs. In contrast, in a mouse model of oesophageal candidiasis in which dissemination into internal organs did not occur, no SAP2 expression was detected at any time. Our results support a role of the SAP2 gene in the late stages of an infection, after fungal spread into deep tissue. This new in vivo expression technology (IVET) for a human fungal pathogen allows the detection of virulence gene induction at different stages of an infection, and therefore provides clues about the role of these genes in the disease process.  相似文献   

5.
Candida albicans is the most frequently isolated fungus in immunocompromised patients associated with mucosal and deep-tissue infections, To investigate the correlation between virulence and resistance on a gene expression profile in C. albicans, we examined the changes in virulence-related genes during the development of resistance in C, albicans from bone marrow transplant patients using a constructed cDNA array representing 3096 unigenes. In addition to the genes known to be associated with azole resistance,16 virulence-related genes were identified, whose differential expressions were newly found to be associated with the resistant phenotype. Differential expressions for these genes were confirmed by RT-PCR independently. Furthermore, the up-regulation of EFG1, CPH2, TEC1, CDC24, SAP10, ALS9, SNF1, SP072 and BDF1, and the down-regulation of RAD32, IPF3636 and UB14 resulted in stronger virulence and invasiveness in the resistant isolates compared with susceptible ones. These findings provide a link between the expression of virulence genes and development of resistance during C. albicans infection in bone marrow transplant (BMT) patients, where C. albicans induces hyphal formation and expression change in multiple virulence factors.  相似文献   

6.
7.
Infection-related gene expression in Candida albicans   总被引:1,自引:0,他引:1  
Research into the major fungal pathogen, Candida albicans has firmly entered the post-genomics era. The current challenge is to apply these technologies to the analysis of C. albicans infections. Initial studies, which focused on the expression of specific virulence genes, have supported the view that secreted hydrolases and adhesins are expressed in a niche-specific fashion during infection. However, genome-wide expression profiling has revealed that most infection-related changes in C. albicans gene expression reflect environmental adaptation. Initial contacts with the host and disease progression are clearly associated with metabolic and stress adaptation. These studies, together with analyses of C. albicans mutants, indicate that physiological fitness plays a central role in the pathogenicity of this fungus, alongside virulence factors.  相似文献   

8.
9.
10.
Salmonella typhimurium, which causes gastroenteritis in calves and humans as well as a typhoid-like disease in mice, uses numerous virulence factors to infect its hosts. Genes encoding these factors are regulated by many environmental conditions and regulatory pathways in vitro. Many virulence genes are specifically induced at particular sites during infection or in cultured host cells. The complex regulation of virulence genes observed in vitro may be necessary to restrict their expression to specific locations within the host. In vitro and in vivo studies provide clues about how virulence genes might be regulated in vivo. Future studies must assess the actual environmental signals and regulators that modulate each virulence gene in vivo and determine how multiple regulatory pathways are integrated to co-ordinate the appropriate expression of virulence factors at specific sites in vivo.  相似文献   

11.
12.
Candida infections are common, debilitating and often recurring fungal diseases and a problem of significant clinical importance. Candida albicans, the most virulent of the Candida spp., can cause severe mucosal and life-threatening systemic infections in immunocompromised hosts. Attributes that contribute to C. albicans virulence include adhesion, hyphal formation, phenotypic switching and extracellular hydrolytic enzyme production. The extracellular hydrolytic enzymes, especially the secreted aspartyl proteinases (Saps), are one of few gene products that have been shown to directly contribute to C. albicans pathogenicity. Because C. albicans is able to colonize and infect almost every tissue in the human host, it may be crucial for the fungus to possess a number of similar but independently regulated and functionally distinct secreted proteinases to provide sufficient flexibility in order to survive and promote infection at different niche sites. The aim of this review is to explore the functional roles of the C. albicans proteinases and how they may contribute to the host/pathogen interaction in vivo.  相似文献   

13.
14.
Hoyer LL  Fundyga R  Hecht JE  Kapteyn JC  Klis FM  Arnold J 《Genetics》2001,157(4):1555-1567
The ALS (agglutinin-like sequence) gene family of Candida albicans encodes cell-surface glycoproteins implicated in adhesion of the organism to host surfaces. Southern blot analysis with ALS-specific probes suggested the presence of ALS gene families in C. dubliniensis and C. tropicalis; three partial ALS genes were isolated from each organism. Northern blot analysis demonstrated that mechanisms governing expression of ALS genes in C. albicans and C. dubliniensis are different. Western blots with an anti-Als serum showed that cross-reactive proteins are linked by beta 1,6-glucan in the cell wall of each non-albicans Candida, suggesting similar cell wall architecture and conserved processing of Als proteins in these organisms. Although an ALS family is present in each organism, phylogenetic analysis of the C. albicans, C. dubliniensis, and C. tropicalis ALS genes indicated that, within each species, sequence diversification is extensive and unique ALS sequences have arisen. Phylogenetic analysis of the ALS and SAP (secreted aspartyl proteinase) families show that the ALS family is younger than the SAP family. ALS genes in C. albicans, C. dubliniensis, and C. tropicalis tend to be located on chromosomes that also encode genes from the SAP family, yet the two families have unexpectedly different evolutionary histories. Homologous recombination between the tandem repeat sequences present in ALS genes could explain the different histories for co-localized genes in a predominantly clonal organism like C. albicans.  相似文献   

15.
The yeast Candida albicans is a harmless colonizer of mucosal surfaces in healthy people but can become a serious pathogen in immunocompromised patients, causing superficial as well as systemic infections. The evolution of gene families encoding pathogenicity-related functions, like adhesins and secreted aspartic proteinases (Saps), which are differentially induced by host signals at various stages of colonization and infection, may have allowed C. albicans an optimal adaptation to many different host niches. We found that even the two alleles of a single gene can be differentially regulated in the diploid C. albicans. In the model strain SC5314, the in vitro expression of one of the two SAP2 alleles, SAP2-1, depended on the presence of a functional SAP2-2 allele. In contrast, inactivation of SAP2-1 did not in-fluence the expression of SAP2-2. The proteinase encoded by the SAP2-2 allele serves as a signal sensor and amplifier to enhance its own expression as well as to induce the SAP2-1 allele to achieve maximal proteolytic activity under appropriate conditions. Using in vivo expression technology, we could demonstrate that the SAP2-1 allele is significantly activated only in the late stages of systemic candidiasis in mice, whereas the SAP2-2 allele is induced much earlier. The differential regulation of the two SAP2 alleles was due to differences in their pro-moters, which contained a variable number of two pentameric nucleotide repeats. Mutations that reduced or increased the copy number of these repeats diminished the inducibility of the SAP2 promoter during infection but not in vitro, suggesting that the mutations affected interactions of regulatory factors that are necessary for SAP2 activation in vivo but dispensable for its induction in vitro. Therefore, the signals and signal transduction pathways that mediate SAP2 expression within certain host niches may differ from those that activate the gene in vitro. In addition to the generation of gene families whose members exhibit functional and regulatory diversification, C. albicans seems to use its diploid genome to create further variability and host adaptation by differential evolution of even the two alleles of a single gene.  相似文献   

16.
17.
18.
Regulation of gene expression has been studied extensively in Saccharomyces cerevisiae and Schizosaccharomyces pombe . Some, but by far not all, of the findings are also applicable to Candida albicans , an important ascomycete fungal pathogen of humans. Areas of research in C. albicans include the influence of key signal transduction cascades on morphology, and the response to host-generated influences, such as host immune effector cells, blood, pH or elevated carbon dioxide. The resistance to antifungal agents and response to stress are also well researched. Conditional gene expression and reporter genes adapted to the codon usage of C. albicans are now widely used in C. albicans . Here we present a comprehensive overview of the current techniques used to investigate regulation mechanisms for promoters in C. albicans and other Candida species. In addition, we discuss reporter genes used for the study of gene expression.  相似文献   

19.
Candida albicans secreted aspartyl proteinases in virulence and pathogenesis.   总被引:14,自引:0,他引:14  
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号