首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The outer membrane proteins of Vibrio vulnificus including isolates from humans, seawater and an asari clam were examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. A major outer membrane protein with an apparent molecular weight of 48,000 (48K protein) was common to all the strains grown in 3% NaCl-nutrient broth; however this 48K protein was not produced in any of the strains grown in chemically defined medium. Other major outer membrane proteins with molecular weights ranging from 33,000 to 40,000 varied in number, relative amount and molecular weight depending on the strain. One to three new outer membrane proteins with molecular weights ranging from 74,000 to 85,000 were produced in the cells grown in iron-deficient medium. The 48K protein and one or two major proteins with molecular weights ranging from 35,000 to 37,000 in the cells grown in 3% NaCl-nutrient broth were not solubilized by 2% SDS at 60 C for 30 min and were resistant to trypsin, indicating that they are porins. On the other hand, in cells grown in chemically defined medium, one or two major outer membrane proteins with molecular weights ranging from 33,000 to 40,000 might be porins.  相似文献   

2.
The outer membrane proteins of five clinical isolates of Campylobacter jejuni were identified by 125I-surface labelling and SDS-PAGE of outer membrane preparations. All isolates expressed a major outer membrane protein of variable molecular weight (43 000-46 000: 43K-46K). Several constant surface proteins were also identified including a 27K protein which was surface-exposed and acid-extractable but was not present in the outer membrane preparations. Isolated flagella comprised a major 62K protein and a minor 87K protein. Both proteins were absent in an aflagellate variant. The 62K protein was immunoblotted and immunoprecipitated by rabbit anti-flagella antisera.  相似文献   

3.
The effect of the culture media on the composition of the outer membrane protein of Vibrio vulnificus strain 393 from human blood was examined. Only one major outer membrane protein, with an apparent molecular weight of 37,000 (37K protein) and 34,000 (34K protein), was formed in the cells grown in 3% NaCl-BHI broth and chemically defined medium, respectively. The production of one major outer membrane protein was also observed in other isolates from humans and asari clam when they were grown in 3% NaCl-BHI broth. On the other hand, three major outer membrane proteins, with apparent molecular weights of 48,000 (48K protein), 37,000 (37K protein), and 34,000 (34K protein), were produced in the cells grown in 3% NaCl-nutrient broth. Three proteins, 48K, 37K, and 34K from strain 393, were purified and the amino acid compositions were determined. Although there was a little difference in the composition of amino acid among three proteins, the amino acid compositions of the three porin-like proteins showed characteristic properties of the porins of Escherichia coli and Salmonella typhimurium. Immunoblot analysis of the outer membrane proteins from four vibrios, E. coli, and S. typhimurium using monospecific antisera against these three porin-like proteins showed that only the antiserum against 37K protein cross-reacted with the outer membrane proteins from all the strains tested.  相似文献   

4.
Significant differences in cysteine-containing proteins and detergent-related solubility properties were observed between outer membrane protein complexes of reproductive (reticulate body) and infective (elementary body) forms of Chlamydia psittaci (6BC). Elementary bodies harvested at 48 h postinfection possessed a 40-kilodalton major outer membrane protein and three extraordinarily cysteine-rich outer membrane proteins of 62, 59, and 12 kilodaltons, all of which were not solubilized by sodium dodecyl sulfate in the absence of thiol reagents. Intracellularly dividing reticulate bodies harvested at 21 h postinfection were severely deficient in the cysteine-rich proteins but possessed almost as much major outer membrane protein as did the elementary bodies. Most of the major outer membrane protein of reticulate bodies was solubilized by sodium dodecyl sulfate and was present in envelopes as monomers, although a proportion formed disulfide-cross-linked oligomers. By 21 to 24 h postinfection, reticulate bodies commenced synthesis of the cysteine-rich proteins which were found in outer membranes as disulfide-cross-linked complexes. The outer membranes of reticulate bodies of Chlamydia trachomatis (LGV434) also were found to be deficient in cysteine-rich proteins and to be more susceptible to dissociation in sodium dodecyl sulfate than were outer membranes of elementary bodies.  相似文献   

5.
Virulent strains of Aeromonas salmonicida observed by electron microscopy were characterized by an outer layer exhibiting a tetragonal repeat pattern. Attenuated strains had a 2.5 X 10(3)- to 5 X 10(3)-fold reduction in virulence and lost the outer layer, autoaggregating properties, and a 49-kilodalton protein (A protein) simultaneously. The A protein is the major protein component of outer membrane fractions of virulent strains. A variety of radiolabeling studies showed that this protein was surface localized and that it provided an effective barrier against iodination of other outer membrane proteins with either lactoperoxidase or diazoiodosulfanilic acid; A protein was not labeled with lactoperoxidase but was specifically labeled with diazoidosulfanilic acid. The A protein was purified by selective extraction with detergent and guanidine hydrochloride, and its amino acid composition was determined. The properties of A protein are compared with those of other bacterial surface layer proteins.  相似文献   

6.
Azotobacter vinelandii produced three major proteins of 93,000, 85,000, and 81,000 daltons and a minor 77,000-dalton protein in the outer membrane of Fe-limited cells, and these cells were competent for transformation by DNA. The synthesis of these proteins was repressed in Fe-sufficient medium. Mo limitation of nitrogen-fixing cells resulted in the hyperproduction of a 44,000-dalton protein and the production of a minor 77,000-dalton protein in the outer membrane. Mo limitation enhanced competence in Fe-limited medium and induced competence in Fe-sufficient medium. The 44,000-dalton protein was replaced by a 45,000-dalton protein when Fe-sufficient medium also contained NH4+, but the cells were noncompetent. The synthesis of these proteins was repressed in Mo-sufficient medium and by NH4+ in Fe-limited medium. All of the culture supernatants contained a blue-white fluorescent material (absorbance maximum, 214 nm) which appeared to coordinate Fe3+, Fe2+, MoO4(2-), WO3(2-), and VO3(-).  相似文献   

7.
Outer membrane fractions were prepared from 11 bacteria in the family Enterobacteriaceae: Escherichia coli serotypes O1K-, O4K2, O26K60, O75K-, and O111K58, Shigella flexneri, Salmonella typhimurium, Klebsiella pneumonia, Serratia marcescens, Proteus vulgaris, Proteus mirabilis, and Providencia stuartii. All strains studied were found to contain one non-peptidoglycan-bound, heat-modifiable outer membrane protein, and one or two peptidoglycan-associated major outer membrane proteins in the 27,000- to 40,000-dalton range. Crossed immunoelectrophoresis using sodium dodecyl sulfate-polyacarylamide gel electrophoresis for separation of the antigens in the first dimension of the procedure was shown to provide a useful model system for studying the antigenic relationships of the major outer membrane proteins in Enterobacteriaceae species. Peptidoglycan-bound major outer membrane proteins of all bacteria studied reacted with antiserum against the purified peptidogylcan-bound matrix protein I of E. coli O26K60 in this system. Non-peptidoglycan-associated proteins of all strains cross-reacted with protein II of E. coli O26K60 in both their unmodified and their heat-modified forms. These results indicate that the genes coding for the major outer membrane proteins in the family Enterobacteriaceae have been well enough conserved during the course of evolution to allow significant antigenic cross-reactivity between the corresponding proteins in different enterobacterial species.  相似文献   

8.
Group B Neisseria meningitidis is thus far subdivided into 15 protein serotypes based on antigenically different major outer membrane proteins. Most serotypes have three or four major proteins in their outer membranes. Comparative structural analysis by chymotryptic 125I-peptide mapping was performed on these major proteins from the prototype strains as well as from six non-serotypable strains. The major outer membrane proteins from each of the serotypes were first separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis using the Laemmli system. Individual proteins within the gel slices were radioiodinated and digested with chymotrypsin, and then their 125I-peptides were separated by electrophoresis and chromatography on cellulose thin-layer plates. The peptide maps obtained by autoradiography were categorized into five different structural classes which correlated with the apparent molecular weights of proteins, i.e., 46 +/- 1K, 41 +/- 1K, 38 +/- 1K, 33 +/- 1K, and 28 +/- 1K. Each of the major outer membrane proteins within a strain had a distinctly different chymotryptic peptide map, indicating significant differences in the primary structure of these proteins. In contrast, outer membrane proteins of the same or very similar molecular weight from different serotype strains had similar, occasionally identical peptide maps, indicating a high degree of structural homology. The unique peptides from proteins of the same structural classes were often hydrophilic, whereas common peptides were often hydrophobic, suggesting that the serotype determinants reside within the variable hydrophilic regions of major outer membrane proteins.  相似文献   

9.
Protein compositions of the inner and outer membranes of Escherichia coli K-12 have been analyzed by two-dimensional gel electrophoresis in which proteins are separated according to apparent isoelectric point (first dimension) and to apparent molecular weight (second dimension). Membrane proteins except for a pair of major outer membrane proteins (proteins Ia and Ib) were found to be solubilized effectively by lysis buffer containing urea, Triton X-100, ampholines and 2-mercaptoethanol. The latter two proteins could be solubilized after precipitation of membrane fraction with trichloroacetic acid; they formed a pair of spots at an acidic region on the electropherogram. Another major protein of the outer membrane, protein II, was also identified. Most of the inner and outer membrane proteins were shown to be focused at a pH range between 4 and 6.5. Specific protein patterns characteristic for both the inner and outer membranes could thous be visualized by the present system. At least 120 and 50 protein species were detected for the inner and outer membranes, respectively.  相似文献   

10.
The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. By silver staining of the protein profile, a major protein doublet of 100-110 kDa was detected. In-gel tryptic digestion and matrix-assisted laser desorption/ionization mass spectrometry identified these proteins as the putative outer membrane proteins PmpG and PmpH.  相似文献   

11.
Architecture of the cell envelope of Chlamydia psittaci 6BC.   总被引:5,自引:2,他引:3       下载免费PDF全文
The cysteine-rich envelope proteins of the elementary body form of chlamydiae are thought to be located in the outer membrane on the basis of their insolubility in the weak anionic detergent N-lauryl sarcosinate (Sarkosyl). We found, however, that the insolubility of the small (EnvA) and the large (EnvB) cysteine-rich proteins of Chlamydia psittaci 6BC in Sarkosyl is dependent on the maintenance of a supramolecular disulfide-cross-linked complex and is unlikely to be a valid indicator of outer membrane location. Consequently, we used other methods to characterize the architecture of the cell envelope of C. psittaci 6BC. We found that disulfide-reduced EnvA, previously shown to be a lipoprotein, segregated into the detergent phase during Triton X-114 partitioning experiments and was recovered from the membrane fraction of elementary bodies lysed by nondetergent means. In contrast, disulfide-reduced EnvB segregated to the aqueous phase in partitioning experiments and was found in the soluble fraction of elementary bodies lysed in the absence of detergents. The hydrophobic affinity probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)-diazirine labeled the major outer membrane protein and EnvA but did not label EnvB. Treatment of intact elementary bodies of C. psittaci with trypsin had no effect on the cysteine-rich proteins, although the major outer membrane protein was partially degraded. On the basis of these and other observations, we propose that EnvA is anchored to the outer membrane by its lipid moiety, with a hydrophilic peptide portion extending into the periplasm, and that EnvB is located exclusively within the periplasm. We further propose that disulfide-cross-linked polymers of EnvB are the functional equivalent of peptidoglycan, forming a disulfide-cross-linked network with the periplasmic domains of EnvA and other membrane proteins, which accounts for the osmotic stability of elementary bodies.  相似文献   

12.
Solubilization of the major outer membrane protein of Rhodopseudomonas sphaeroides, and subsequent isolation, has been achieved by both non-detergent- and detergent-based methods. The protein was differentially solubilized from other outer membrane proteins in 5 M guanidine thiocyanate which was exchanged by dialysis for 7 M urea. The urea-soluble protein was purified to homogeneity by a combination of DEAE-Sephadex chromatography and preparative electrophoretic techniques. Similar to the peptidoglycan-associated proteins of other Gram-negative bacteria, the protein was also purified by differential temperature extraction of the outer membrane in the presence of sodium dodecyl sulfate (SDS) followed by preparative SDS-polyacrylamide gel electrophoresis. Immunochemical analysis of the proteins isolated by the two techniques established the immunochemical identity and homogeneity of each preparation. Immunoblots of SDS-polyacrylamide gels revealed that antibody directed against the major outer membrane protein reacted with the three high molecular weight aggregates present in the outer membrane which we have previously shown to be composed of the major outer membrane protein and three nonidentical small molecular weight proteins.  相似文献   

13.
Rickettsia prowazeki were disrupted in a French pressure cell and fractionated into soluble (cytoplasm) and envelope fractions. The envelope contained 25% of the cell protein, with the cytoplasm containing 75%. Upon density gradient centrifugation, the envelope fraction separated into a heavy band (1.23 g/cm3) and a lighter band (1.19 g/cm3). The heavy band had a high content of 2-keto-3-deoxyoctulosonic acid, a marker for bacterial lipopolysaccharide, but had no succinic dehydrogenase, a marker for cytoplasmic membrane activity, and therefore represented outer membrane. The lighter band exhibited a high succinate dehydrogenase activity, and thus contained inner (cytoplasmic) membrane. Outer membrane purified by this method was less than 5% contaiminated by cytoplasmic membrane; however, inner membrane from the gradient was as much as 30% contaminated by outer membrane. The protein composition of each cellular fraction was characterized by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The outer membrane contained four major proteins, which were also major proteins of the whole cell. The cytoplasmic membrane and soluble cytoplasm exhibited a more complex pattern on gels.  相似文献   

14.
The murein and membrane protein compositions of Caulobacter crescentus strains CB13B1a and CB15 have been characterized, and the influence on cell envelope constituents of culture conditions which affect morphogenesis have been studied. Amino acid and sugar analysis of murein sacculi revealed a simple A1gamma murein configuration typical of gram-negative bacteria. The membranes of C. crescentus had low levels of 2-keto-3-deoxyoctonate relative to enteric bacteria, in addition to the absence of lipid A components (Shapiro et al., Science 173:884-892, 1971; Chow and Schmidt, J. Gen. Microbiol, 83:369-373, 1974). Nevertheless, C. crescentus membranes could be fractionated into inner and outer membrane components by sucrose density gradient centrifugation procedures developed for Escherichia coli. The proteins of the outer membrane were distributed between three major (I, II, and III) and two minor (IV and V) protein classes. Class I proteins were greater than or equal to 74,000 daltons and constituted the primary proteins of the outer membrane. Class I proteins were separated into approximately 50 polypeptides by two dimensional gel electrophoresis; the protein composition of thi s class was affected by culture conditions in both CB13B1a and CB15. Class II (47,000 to 39,000 daltons) and III (20,000 to 11,500 daltons) proteins differed in each strain in composition and response to culture conditions.  相似文献   

15.
Native oligomers of three Pseudomonas aeruginosa outer membrane porin proteins and one Escherichia coli porin were demonstrated by using a chemical cross-linking technique. P. aeruginosa protein F, the major constitutive outer membrane porin, was cross-linked to dimers in outer membrane and whole-cell cross-linking experiments. Purified preparations of P. aeruginosa proteins F, D1 (glucose induced), and P (phosphate starvation induced) and E. coli protein PhoE (Ic) were also cross-linked to reveal dimers and trimers upon two-dimensional sodium dodecyl sulfate-polyacrylamide electrophoretic analysis. Cross-linking of protein F was abolished by pretreatment of the protein with sodium dodecyl sulfate, indicating that the cross-linked products were due to native associations in the outer membrane.  相似文献   

16.
An enzyme in the cytoplasmic membrane, nitrate reductase, can be solubilized by heating membranes to 60 degrees C for 10 min at alkaline pH. A protease in the cell envelope has been shown to be responsible for this solubilization. The localization of this protease in the outer membrane was demonstrated by separating the outer membrane from the cytoplasmic membrane, adding back various forms of outer membrane protein to the cytoplasmic membrane, and following the increase in nitrate reductase solubilization with increasing amounts of outer membrane proteins. This solubilization is accompanied by the cleavage of one of the subunits of nitrate reductase and is inhibited by the protease inhibitor p-aminobenzamidine. Analysis of membrane proteins synthesized by cells grown in the presence of various amounts of p-aminobenzamidine revealed that p-aminobenzamidine affects the synthesis of the major outer membrane proteins but has little effect on the synthesis of cytoplasmic membrane proteins. When outer membrane is reacted with the protease inhibitor [3H]diisopropylfluorophosphate, a single protein in the outer membrane is labeled. Since the interaction with diisopropylfluorophosphate is inhibited by p-aminobenzamidine, it is suggested that this single outer membrane protein is responsible for the in vitro solubilization of nitrate reductase and the in vivo processing of the major outer membrane proteins.  相似文献   

17.
Gonococci were labelled with 125I using the lactoperoxidase system. The amount of label incorporated was similar with all strains including those which appeared capsulated. Electrophoresis on sodium dodecyl sulphate-polyacrylamide gels revealed that the major proteins labelled were those found in outer membrane preparations. Comparison of variants of one strain showed that the major outer membrane protein (protein I) was always present and heavily labelled. The second major protein (protein II) was present in variable amounts but labelling was proportional to the amount present. A third protein (III) was only present in outer membranes from a freshly isolated variant but was present in whole cells of each strain. Protein III was not labelled in whole cells but was labelled in outer membrane preparations suggesting that many membranes have their inner surface exposed. The labelling of a strain adapted to growth in guinea-pig chambers failed to reveal any new major surface proteins. The results demonstrate the variation in surface topography possible with variants of one strain of gonococcus but show that one major protein antigen is always expressed on the surface.  相似文献   

18.
A method is described for the preparation of outer and cytoplasmic membranes of Pseudomonas aeruginosa, and the outer membrane proteins characterized. Isolated outer and cytoplasmic membranes differed markedly in the content of 2-keto-3-deoxyoctonate (lipopolysaccharide) and phospholipid as well as in the localization of certain enzymes (NADH oxidase, succinate dehydrogenase, D-lactate dehydrogenase, malate dehydrogenase, and phospholipase), and also in the microscopic morphology. The outer membrane preparation showed activity neutralizing a certain bacteriocin or bacteriophages, whereas the cytoplasmic membrane preparation showed no neutralizing activity. The protein composition of membrane preparations from five different strains of P. aeruginosa [P14, M92 (PAO1), PAC1, P15, and M2008 (PAT)] were determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. More than 50 protein bands were detected in the cytoplasmic membrane preparation. The protein compositions of outer membranes from the five different strains were very similar: at least 6 major bands were found (apparent molecular weights: Band D, 50,000; band E, 45,000; band F, 33,000; bands G and H, 21,000; and band I, 8,000). The protein composition of outer membranes was affected by some physiological growth conditions. Some features of major outer membrane proteins were also studied. Band F showed anomalous migration on SDS polyacrylamide gel electrophoresis depending on the solubilizing conditions or pretreatment with TCA. Band I seemed to be a protein analogous to the lipoprotein which had been found in the outer membrane of Escherichia coli.  相似文献   

19.
Bartonella henselae, an infectious agent causing cat-scratch disease and vasculoproliferative disorders in humans, is a fastidious facultative intracellular pathogen. The outer membrane proteins of B. henselae are key molecules that play a primary role in host-cell interactions. We isolated B. henselae outer membrane proteins, using the ionic detergent N-lauroyl sarcosine sodium salt and sodium carbonate, purification by two-dimensional (2-D) gel electrophoresis, and protein identification using mass spectrometry. Treatment with buffers containing ASB-14 and ZWITTERGENT 3-10 increased solubilization of B. henselae proteins, particularly proteins with basic pI. Three hundred and sixty-eight spots were detected from the sarcosine-insoluble outer membrane fraction; 94 distinct protein species were identified from 176 spots. In the outer membrane fraction from carbonate incubation, 471 spots were calculated and 259 spots were identified, which included 139 protein entries. There were six outer membrane proteins in the sarcosine-insoluble outer membrane fraction compared with nine outer membrane proteins from samples subjected to carbonate incubation. We used bioinformatic analysis to identify 44 outer membrane proteins by prediction of their domains and tertiary structures and documented the potential virulence factors. We established the 2-D reference maps of the outer membrane subproteome of B. henselae using the two different extraction methods, which were partly complementary to each other. Sodium carbonate extraction isolated low-abundance and basic proteins better than the lauroyl sarcosine sodium salt extraction, which enriched high-abundance porins.  相似文献   

20.
When the 42,000-dalton major outer membrane protein of Escherichia coli O111 is examined on alkaline polyacrylamide gels containing sodium dodecyl sulfate, it is resolved into three distinct bands designated as proteins 1, 2, and 3. Band 3 consists of two distinct polypeptides, proteins 3a and 3b. E. coli K-12 does not make any protein 2, but makes proteins similar to 1, 3a, and 3b as indicated by comparison of cyanogen bromide peptide patterns. Several Shigella species and most other strains of E. coli resemble E. coli K-12 in that they lack protein 2, whereas Salmonella typhimurium is more similar to E. coli O111. In addition to these species and strain differences, cultural differences resulted in differences in the outer membrane protein profiles. Under conditions of catabolite repression, the level of protein 2 in E. coli O111 decreased while the level of protein 1 increased. An enterotoxin-producing strain similar to E. coli O111 produced no protein 1 and an elevated level of protein 2 under conditions of low catabolite repression. The levels of proteins 1 and 3 are also different in different phases of the growth curve, with protein 1 being the major species in the exponential-phase cells and protein 3 being the major species in stationary-phase cells. A multiply phage-resistant mutant of E. coli K-12 with no obvious cell wall defects produced no protein 1 or 2, but made increased amounts of protein 3. Thus, the major outer membrane proteins of E. coli and related species may vary considerably without affecting outer membrane integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号