首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rat and human serotonin 5-HT2C receptor isoforms were evaluated for agonist-independent activation of inositol phosphate production in COS-7 cells. The nonedited isoform (5-HT(2C-INI)) displayed the greatest basal activity, stimulating inositol phosphate production fourfold over the fully edited isoform (5-HT(2C--VGV)). All of the other isoforms tested displayed intermediate levels of basal activity. Decreasing receptor expression levels by 50% produced a parallel decrease in basal activity. 5-HT stimulated inositol phosphate production twofold over basal levels through the 5-HT(2C-INI) receptor and eightfold over basal levels through the 5-HT(2C-VGV) receptor but produced similar maximal levels of inositol phosphate. 5-HT competition for [3H]mesulergine binding to 5-HT(2C-INI) best fit a two-site analysis with K(H) = 7.6 nM and K(L) = 160 nM, whereas 5-HT(2C-VGV) best fit a one-site model with Ki = 163 nM. [3H]5-HT labeled 36% of the total population of 5-HT(2C-INI) receptors labeled by [3H]mesulergine but only 12% of 5-HT(2C-VGV) receptors. [H]5-HT K(D) values increased from 5.1 nM for 5-HT(2C-INI) to 20 nM for 5-HT(2C-VGV). [3H]Mesulergine K(D) values were the same for both isoforms. 5-HT EC50 values for inositol phosphate production increased from 6.1 nM for 5-HT(2C-INI) to 30 nM for 5-HT(2C-VGV). These results demonstrate that RNA editing decreases 5-HT2C receptor basal activity, agonist affinity, and potency, indicating that RNA editing may play a role in regulating serotonergic signal transduction and response to drug therapy.  相似文献   

2.
3.
Adenosine-to-inosine RNA editing events that have been demonstrated for 5HT (2C) receptors resulted in alterations of the amino acid sequence at positions 156, 158 and 160 in the intracellular loop 2 (IL2) region. The edited receptor isoforms were shown to have reduced basal activity, but similar maximum responses to agonist binding. To identify the molecular mechanism of these pharmacological effects of editing we explored the conformational properties of the edited IL2 in comparison with the wild type. The results from conformational studies of the IL2 isoforms, using biased Monte Carlo simulations with an implicit solvent model based on a screened Coulomb potential, show that the compared loops differ in their preferred spatial orientations as a result of differences in the conformational space that is accessible to them by energy criteria. For the IL2 of the unedited (5HT (2C-INI) ) receptor, the preference for structures oriented towards the 7TM bundle is larger than for the 5HT (2C-VGV) edited receptor. This difference in preferred orientation can affect the association of IL2 with other intracellular loop domains involved in G protein coupling and hence the coupling efficiency. The results illustrate the high sensitivity of the system to small changes in the interaction surface presented to other intracellular loops, and/or the G protein.  相似文献   

4.
Serotonin 2C receptor (5-HT2CR) heterogeneity in the brain occurs mostly from two different sources: (i) 5-HT2CR mRNA undergoes adenosine-to-inosine editing events at five positions, which leads to amino acid substitutions that produce receptor variants with different pharmacological properties; (ii) 5-HT2CR mRNA is alternatively spliced, resulting in a truncated mRNA isoform (5-HT2CR-tr) which encodes a non-functional serotonin receptor. 5-HT2CR mRNA editing efficiencies and the expression of the full-length and the truncated 5-HT2CR mRNA splice isoforms were analyzed in the prefrontal cortex of elderly subjects with schizophrenia vs. matched controls (ns = 15). No significant differences were found, indicating that there are no alterations in editing or alternative splicing of 5-HT2CRs that are associated with schizophrenia in persons treated with antipsychotic medications. Quantitation of 5-HT2CR and 5-HT2CR-tr mRNA variants revealed that the expression of 5-HT2CR-tr was approximately 50% of that observed for the full-length isoform.  相似文献   

5.
Different isoforms of serotonin subtype 2C receptor (5-HT(2C)R) with altered G protein-coupling efficacy are generated by RNA editing, which converts genomically encoded adenosine residues into inosines. In combination, editing of five sites all located within the second intracellular loop region of 5-HT(2C)R mRNA changes the gene-encoded Ile, Asn, and Ile at positions 156, 158, and 160, respectively. We analyzed the G protein-coupling functions of previously unreported editing isoform receptors. An approximately 13-fold reduction in the agonist potency for G protein-coupling stimulation as well as a significantly reduced basal level activity was observed with the thalamus-specific isoform carrying Ile156, Gly158, and Val160 (5-HT(2C)R-IGV). In contrast, the agonist was four- to five-fold less potent with 5-HT(2C)R-MSV and -IDV, detected in the amygdala and choroid plexus, respectively, indicating a dominant role for the amino acid residue at position 158 in receptor functions. We also identified a splicing variant receptor with a truncated C terminus that displayed no ligand binding capacity or G protein-coupling activity. Examination of the alternatively spliced RNA encoding this truncated receptor suggests that editing of this variant RNA occurs after completion of splicing, resulting in complete editing at all five sites.  相似文献   

6.
7.
Guo L  Zhang J  Yan Q  Yin M 《Human cell》2011,24(2):104-111
RNA editing is a mechanism for generating molecular diversity by altering the genetic code at the level of RNA. The 5-HT(2C) receptor is the only G protein-coupled receptor known to be edited. It has been reported that the non-edited 5-HT(2C) receptor stimulates secretion of the APP metabolite APP ectodomain (APPs). However, it remains unknown whether RNA-edited 5-HT(2C) receptors can also affect APPs secretion. In this study, cDNAs of five non-edited or partially/fully edited 5-HT(2C) receptor isoforms (INI, VNI, VNV, VSV and VGV) were stably transfected into HEK293APPSwe cells to detect the cell proliferation and APPs secretion. The results demonstrated that the overexpression of INI and VNI caused increased proliferation of host cells while VNV, VSV and VGV caused inverse effects (P?相似文献   

8.
9.
The serotonin 2C receptor (5-HT2CR), a Gq-protein-coupled neurotransmitter receptor, exists in multiple isoforms that result from RNA editing of five exonic adenosines that are converted to inosines. In the adult brain, editing of 5-HT2C pre-mRNA exhibits remarkable plasticity in response to environmental and neurochemical stimuli. Here, we investigated two potential mechanisms underlying these plastic changes in adult 5-HT2CR editing phenotypes in vivo: activation of phospholipase C (PLC) and alternative splicing of pre-mRNA encoding the editing enzymes ADAR1 and ADAR2. Studies on two inbred strains of mice (C57Bl/6 and Balb/c) revealed that sustained stimulation of PLC—a downstream effector of activated Gαq protein—increased editing of forebrain neocortical 5-HT2C pre-mRNA at two sites known to be targeted by ADAR2. Moreover, changes in relative expression of the alternatively spliced “a” and “b” mRNA isoforms of ADAR1 and ADAR2 also correlate with changes in 5-HT2CR editing. The site-specific changes in 5-HT2CR editing detected in mice with different “a” over “b” ADAR mRNA isoform ratios only partially overlap with those evoked by sustained PLC activation and are best explained by the increased editing efficiency of ADAR1. Thus, activation of PLC and alternative splicing of ADAR pre-mRNA have both overlapping and specific roles in modulating 5-HT2CR editing phenotypes.  相似文献   

10.
11.
12.
13.
An alignment of serotonin [5-hydroxytryptamine (5-HT)] G protein-coupled receptors identified a lysine at position 4.45 (helix 4) and a small polar residue (serine or cysteine) at 7.45 (helix 7) that occur exclusively in the 5-HT2 receptor family. Other serotonin receptors have a hydrophobic amino acid, typically a methionine, at 4.45 and an invariant asparagine at 7.45. The functional significance of these class-specific substitutions was tested by site-directed mutagenesis of two distantly related 5-HT2 receptors, Caenorhabditis elegans 5-HT2ce and rat 5-HT2C. Residues 4.45 and 7.45 were each mutated to a methionine and asparagine, respectively, or an alanine and the resulting constructs were tested for activity. A K4.45M mutation decreased serotonin-dependent activity (Emax) of the rat 5-HT2C receptor by 60% and that of the C. elegans homologue by 40%, as determined by a fluorometric plate-based calcium assay. The rat mutant also exhibited nearly sixfold higher agonist binding affinity and significantly lower constitutive activity compared with wildtype. Mutagenesis of S7.45 in the C. elegans receptor increased serotonin binding affinity by up to 25-fold and decreased Emax by up to 65%. The same mutations of the cognate C7.45 in rat 5-HT2C produced a smaller fourfold change in the affinity for serotonin and decreased agonist efficacy by up to 50%. Substitutions of S/C7.45 did not produce a significant change in the basal activity of either receptor. All mutants tested exhibited levels of receptor expression similar to the corresponding wildtype based on measurements of specific [3H]-mesulergine binding or flow cytometry analyses. Taken together, these results suggest that K4.45 and S/C7.45 play an important role in the conformational rearrangements leading to agonist-induced activation of 5-HT2 receptors.  相似文献   

14.
15.
16.
Site-specific deamination of five adenosine residues in the pre-mRNA of the serotonin 2C receptor, 5HT2CR, alters the amino acid sequence of the encoded protein. Such RNA editing can produce 32 mRNA variants, encoding 24 protein isoforms that vary in biochemical and pharmacological properties. Because serotonin functions in the regulation of mood and behaviour, modulation of serotonin signalling by RNA editing may be relevant to such psychiatric disorders as anxiety and depression. Several recent human studies have reported changes in 5HT2CR editing in schizophrenia, major depression or suicide, but results are variable and not conclusive. Rodent studies have begun to examine effects of drug treatments and stress. Understanding the importance of 5HT2CR editing in mood and behaviour will be assisted by experiments designed to analyse multiple strains of mice, in different behavioural tests, with optimal evaluation of the time course of molecular changes.  相似文献   

17.
Abstract: Editing of mRNA in the coding region of the second transmembrane domain of glutamate receptor subunits GluR2, GluR5, and GluR6 involves a change of the base A in genomic DNA to the base G in mRNA as described in rat brain. To determine whether this reaction occurs in humans as well as rats, we studied RNA editing of GluR2 and GluR6 in human brain. We compared the extent of editing in controls and cases with Huntington's disease. To assay the extent of editing in brain RNA, first strand cDNA was amplified using the polymerase chain reaction yielding a product across the region of the second transmembrane spanning segment in which editing takes place in rats. The PCR product was incubated with the restriction enzyme BbvI, which recognizes the sequence GCAGC present in the nonedited sequence of the mRNA in subunits GluR2 and GluR6. Thus, BbvI cuts the nonedited version but leaves the edited version intact. As in the rat, the GluR2 subunit mRNA was completely edited in human brain. The GluR6 subunit was nearly completely edited in all gray matter structures investigated including cortex, striatum, thalamus, hippocampus, amygdala, and cerebellum with extent of editing ranging from 89% in the cerebellum to 95% in the cortex and striatum. No significant differences in the extent of RNA editing were apparent in control versus Huntington's disease brains. To compare the extent of editing in neurons and glia in the brain, editing in cerebral cortex (predominantly gray matter and thus neurons) was compared with editing in corpus callosum (white matter and thus nearly completely glial cells). In white matter, GluR2 was completely edited, whereas GluR6 was only ~10% edited compared with ~90% edited in gray matter. Thus, these studies indicate that RNA editing is seen in human brain as well as rat brain and that the extent of editing is similar in Huntington's disease compared with controls. The differences in editing in white matter for GluR6, but not for GluR2, suggest that different templates could be subject to different editing activities that undergo tissue-specific regulation.  相似文献   

18.
Summary 1. The structure and function of glutamate receptor subunits GluR2, GluR5, and GluR6 are changed by RNA editing. This reaction produces a base transition in the second transmembrane spanning region. The triplet CAG (coding for glutamine) is changed to CGG (coding for arginine). This transition has a pronounced effect on calcium fluxes through the respective ion channels, because calcium currents decrease with the rate of editing.2. In the present study the extent of RNA editing of the glutamate receptor subunit GluR5 was studied in different brain regions of control rats using a newly developed analysis system. This system is based on restriction analysis of the polymerase chain reaction (PCR) product, derived from reverse-transcribed mRNA as template, with the enzymeBbv1.Bbv1 recognizes the sequence of the nonedited receptor subunit around the edited base (sequence GCAGC) but not that of the edited subunit (sequence GCGGC; A edited to G).3. Total RNA was isolated from the cerebral cortex, striatum, hippocampus, thalamus, hypothalamus, cerebellum, pons/medulla oblongata, and white matter and reverse transcribed into cDNA. The region across the edited sequence was amplified by PCR using GluR5-specific primers and the cDNA as template. PCR products were cleaned by ethanol precipitation, incubated withBbv1, and electrophoresed on an agarose gel together with standards. Gels were photographed and the extent of GluR5 mRNA editing was quantified using an image analysis system. A calibration curve was obtained using PCR products amplified from plasmids with edited and nonedited GluR5 as inserts.4. In the brain of control rats the extent of RNA editing of the GluR5 subunit amounted to 62±6.0% of total (cortex), 43±5.3% (striatum), 52±5.3% (hippocampus), 91±6.3% (thalamus), 85±10.2% (hypothalamus), 82±6.5% (cerebellum), 88±6.8% (pons/medulla oblongata), and 41±2.7% (white matter).5. The extent of RNA editing varied, thus, considerably in different brain regions, being lowest in the white matter and striatum and highest in the thalamus and pons/medulla oblongate. RNA editing of glutamate receptor subunits may play an important role in the control of calcium fluxes through non-N-methyl-D-aspartate receptor channels in different physiological and/or pathological states of the brain.  相似文献   

19.
Micro-processing events in mRNAs identified by DHPLC analysis   总被引:4,自引:0,他引:4  
  相似文献   

20.
Zhang Y  Li A  Xin J  Lao L  Ren K  Berman BM  Tan M  Zhang RX 《Neurochemical research》2011,36(10):1785-1792
We previously showed that electroacupuncture (EA) activates medulla-spinal serotonin-containing neurons. The present study investigated the effects of intrathecal 5,7-dihydroxytryptamine creatinine sulfate, a selective neurotoxin for serotonergic terminals, the 5-hydroxytryptamine 1A receptor (5-HT1AR) antagonist NAN-190 hydrobromide and the 5-HT2C receptor (5-HT2CR) antagonist SB-242,084 on EA anti-hyperalgesia. EA was given twice at acupoint GB30 after complete Freund’s adjuvant (CFA) injection into hind paw. CFA-induced hyperalgesia was measured by assessing hind paw withdrawal latency (PWL) to a noxious thermal stimulus 30 min post-EA. Serotonin depletion and the 5-HT1AR antagonist blocked EA anti-hyperalgesia; the 5-HT2CR antagonist did not. Immunohistochemical staining showed that spinal 5-HT1AR was expressed and that 5-HT2CR was absent in naive and CFA-injected animals 2.5 h post-CFA. These results show a correlation between EA anti-hyperalgesia and receptor expression. Collectively, the data show that EA activates supraspinal serotonin neurons to release 5-HT, which acts on spinal 5-HT1AR to inhibit hyperalgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号